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a b s t r a c t

This paper presents model parameter estimation conducted by data assimilation and associated uncer-
tainty quantification for predictive engineering with specific application to reflood phenomena in PWR
rod bundles. The uncertainties in the prediction of engineering systems are known to be originated from
various non-input parameters, e.g., numerics, scaling effects, etc., as well as modeling parameters such as
initial and boundary conditions, and physical models. Since the physical models are usually developed by
small scale experiments and the experiments used for validation and uncertainty evaluation may not
cover the real plant scale, the up-scaling capabilities of a best-estimate safety analysis code must be eval-
uated. The objective of this work is thus first of all, to refine the model parameters based on the Bayes’
theorem and subsequently estimate the uncertainties on parameters/responses during reflood phase. To
illustrate this, reflood experiment data were collected and utilized to complete model calibration for the
thermal–hydraulic parameters. The second goal of this study is to suggest optimum parameter distribu-
tions for the simulation of the multiple reflood tests performed at different facilities with different scales
and dimensions. Since existing experimental data and physical models/correlations were produced from
several tests performed at the small scale with limited initial and boundary conditions, scaling consider-
ations must be addressed when simulating larger scale tests for the uncertainty analysis. Blind calcula-
tions were carried out to observe whether the a posteriori parameter samples obtained via the model
calibration against a basis test, i.e., a small scale test, which was performed by compensating the scaling
distortions properly simulate scaled up tests. Simulations were performed using Safety and Performance
Analysis Code (SPACE) developed by multiple research institutes in Republic of Korea to predict the ther-
mal hydraulic system behaviors of nuclear power plants.

� 2017 Elsevier Ltd. All rights reserved.

1. Introduction

For a number of years, many researchers have worked on the
development of uncertainty quantification methodologies to esti-
mate uncertainties on the model parameters and the responses
of interest. The Code Scaling, Applicability, and Uncertainty (CSAU)
evaluation method was developed to establish the requirements
for quantifying code uncertainties in specific scenarios for Nuclear
Power Plants (NPPs) (Boyack et al., 1989, 1990). The CSAU method
provides not only guidelines for developing specific uncertainty
methodologies but also the relevance of scaling issues when using
system codes for licensing.

For the uncertainty quantification, CSAU proposes the Phenom-
ena Identification and Ranking Table (PIRT) which has become a

standard process accepted throughout the international nuclear
community providing guidance of executing Best Estimate Plus
Uncertainty (BEPU) applications. Since the uncertainty analysis
performed with CSAU in 1980s, many new methodologies such
as model calibration and parameter estimation have been pro-
posed. In an inverse problem, unlike the forward problem, the
uncertain parameters to a computational model are inferred from
observations of the outputs of the model. Methodologies for the
model calibration (also called data assimilation) have been devel-
oped based on Bayesian theorem by mathematics, statistics, and
engineering community, and applied to complex engineering sys-
tems to estimate an optimum parameter distribution (Kennedy
and O’Hagan, 2001; Oberkampf et al., 2004; Tarantola, 2005;
Williams et al., 2006; Bui-Thanh et al., 2013; Petra et al., 2014;
Cacuci and Ionescu-Bujor, 2010; Petruzzi and D’Auria, 2014;
Kovtonyuk et al., 2016). Markov Chain Monte Carlo (MCMC)
(Andrieu et al., 2003) simulations are primarily used for calculating
numerical approximation of multi-dimensional distributions in
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Bayesian statistics and predictive engineering. In Bayesian statis-
tics, the recent development of MCMCmethods has been a key step
in making it possible to compute multi-scale and multi-
dimensional system that require integrations over hundreds of
unknown parameters. Many software programs such as the Quan-
tification of Uncertainty for Estimation, Simulation and Optimiza-
tion (QUESO) (Estacio-Hiroms and Prudencio, 2012), Design
Analysis Kit for Optimization and Terascale Applications (DAKOTA)
(Adams et al., 2014), PArallel computing Platform IntegRated for
Uncertainty and Sensitivity analysis (PAPIRUS) (Heo and Kim,
2015), etc. that perform statistical analysis for complex engineer-
ing problems also have been developed to support users. The appli-
cation of this work can be broadened to the machine learning
(Murphy, 2012) that gives computers the ability to learn without
being explicitly programmed, where the methodology is mainly
developed base on Bayesian theorem.

For the scaling analysis, CSAU method focuses on scaling up a
particular process from a test facility to a full scale NPP, which pri-
marily relies on the empirically determined relations that model
the process. For the CSAU evaluation, test facility design and oper-
ation were considered to evaluate whether or not the facility as
well as the initial and boundary conditions of a test are properly
scaled so that the processes related to the scenario are not affected
by scaling distortions. The test matrix was also considered to eval-
uate whether test parameters cover the range of interest to NPP
applications. Since the scaling algorithms were introduced by
CSAU, several methodologies were suggested by many institutes
throughout the world. Scaling and uncertainty quantification
methods for thermal hydraulic system codes were suggested by
many experts through the W-GAMA project and well explained
in the SOAR report (OECD NEA Report, 2017). Several scaling anal-
ysis including Uncertainty Methodology based on Accuracy Extrap-
olation (UMAE) (D’Auria et al., 1995), Hierarchical Two Tiered
Scaling (H2TS) (Zuber et al., 1998), three level scaling approaches
(Ishii et al., 1998), Fractional Scaling Analysis (FSA) (Zuber et al.,
2007), and Dynamic System Scaling (DSS) (Reyes, 2015a,b) have
been developed and applied in the design of new test facilities to
evaluate the scaling distortion.

The goal of our study is to develop an advanced uncertainty
quantification algorithm for best estimate simulation of multi-
scale and multi-dimensional phenomena, and to apply these meth-
ods to the analysis of reflood phenomena for the nuclear reactor.
Reliable prediction of complex physical systems requires first of
all, sophisticated mathematical models of the physical phenomena
involved. In addition a comprehensive treatment of the calibration
and validation of the models, as well as the quantification of the
uncertainties inherent in such models are required for the best
estimate analysis. This paper introduces the application of data
assimilation methodology to determine the uncertainty of the
physical models based upon the statistical approach. Data assimi-
lation suggests a mathematical methodology for the best estimate
bias and the uncertainties of the physical models which optimize
the system response following the calibration of model parameters
and responses. The mathematical approaches include probabilistic
methods of data assimilation to solve nonlinear problems with the
a posteriori distribution of parameters derived based on Bayes’ the-
orem. Safety and Performance Analysis Code (SPACE) (SPACE Code
Manual, 2010) is used to predict reflood phenomena and subse-
quently to demonstrate the data assimilation method by determin-
ing the bias and the uncertainty bands. Multiple reflood tests
performed at different facilities with different scales and dimen-
sions were selected for this analysis and blind calculations were
conducted to observe whether the calibrated parameter distribu-
tions obtained by compensating the scaling distortions properly
simulate scaled up tests.

A similar analysis was performed for the Post-BEMUSE REflood
Models Input Uncertainty Methods (PREMIUM) benchmark (OECD
NEA Report, 2016a,b), where the parameter uncertainties were
determined by 6 FEBA tests, and their uncertainties were propa-
gated through the simulation of the 2-D reflood PERICLES to exam-
ine whether the PERICLES test data are enveloped by the
uncertainty band resulting from the propagation. The participants
obtained valuable results, but the quantified uncertainties showed
a large variability and discrepancy among participants and some-
times the results were not satisfactory especially when simulating
PERICLES for the blind calculation. To avoid the scaling distortion

Nomenclature

Acronyms:
BEPU Best Estimate Plus Uncertainty
BEMUSE Best-Estimate Methods – Uncertainty and Sensitivity

Evaluation
CA Cold Assembly
CSAU Code Scaling, Applicability, and Uncertainty
DAKOTA Design Analysis Kit for Optimization and Terascale

Applications
DSS Dynamic System Scaling
FEBA Flooding Experiments with Blocked Arrays
FLECHT–SEASET Full-Length Emergency Core Heat Transfer Se-

parate Effects And System Effects Tests
FSA Fractional Scaling Analysis
H2TS Hierarchical Two Tiered Scaling
HA Hot Assembly
ITF Integral Test Facility
LOCA Loss of Coolant Accident
MCMC Markov Chain Monte Carlo
NPP Nuclear Power Plant
PAPIRUS PArallel computing Platform IntegRated for Uncertainty

and Sensitivity analysis

PIRT Phenomena Identification and Ranking Table
PREMIUM Post-BEMUSE REflood Models Input Uncertainty

Methods
PWR Pressurized Water Reactor
QUESO Quantification of Uncertainty for Estimation, Simulation

and Optimization
SET Separate Effect Test
SPACE Safety and Performance Analysis Code
SOAR State Of the Art Report
UMAE Uncertainty Methodology based on Accuracy Extrapola-

tion

Symbols:
r simulation response vector
p0 nominal values of the parameters
p parameter vector
rm experiment data vector
Cm measurement error covariance matrix
Cp parameter covariance matrix
a regularization parameter
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