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a b s t r a c t

A wavelet based multiscale extended Kalman filtering technique for estimation of reactivity and delayed
neutron precursors’ concentrations is presented in this paper. Reactivity which indicates the criticality
status of the reactor core can only be measured in indirect way. Similarly delayed neutron precursors’
concentrations, the source of the delayed neutrons which play important role in reactor control cannot
be measured directly. Nuclear reactor is an example of multirate nonlinear system in which different
state variables evolve with widely varying dynamics. The state estimation algorithm presented here is
based on and preserves merits of Extended Kalman Filtering (EKF) technique. In addition, use of wavelet
filters enables multiscale decomposition of the state variables that in turn, effectively captures the mul-
tirate nature of the system. Estimation has been carried out using reactor power as the only input. In
order to justify effectiveness of the proposed method, simulation results are shown for completely known
power variation dataset and experimental power variation datasets collected from one of the Indian
research reactors.

� 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Reactivity in the nuclear reactor is a very important variable
which indicates the status of the reactor core. Online measurement
of reactivity is necessary for calibration of control devices, moni-
toring shutdown margins, quantification of the worth of fuel bun-
dles, etc. Shimazu et al. (1987) and Ma et al. (2012). Other
important variables are concentrations of the delayed neutron pre-
cursors which emit delayed neutrons that in turn, play important
role in reactor control (Duderstadt et al., 1976).

Due to lack of suitable sensors, variables like reactivity and
delayed neutron precursors’ concentrations cannot be measured
directly (Perez-Cruz et al., 2007). Consequently, these variables
need to be estimated fromneutron flux/powermeasurements using
an appropriate estimation algorithm (Simon, 2006). Conventionally
Inverse Point Kinetics (IPK) like algorithms were used for the pur-
pose (Ansari, 1991). However, these techniques assume system
variables to be deterministic. But in reality, measurement signals
are inevitably corrupted with noise arising from detectors, commu-
nication channels and over and above due to fundamental stochas-
tic nature of the fission process itself. The classical techniques do

not address stochastic behaviour of reactor kinetics and measure-
ment process. Commonly used method to eliminate noise is to
employ a low pass filter but it may as well remove some of the
information rich frequency components generated by the reactor
system.

Kalman filter is one of the promising modern optimal state esti-
mation algorithms that permits working in a stochastic framework
under the assumption that process uncertainties and measurement
noise have Gaussian distribution. Many attempts have been made
for the observer design problem of the nuclear reactor using Kal-
man filter. Racz (1992) proposed Kalman filtering method for reac-
tivity estimation for small changes in the reactivity. Dong (2010)
reported application of robust Kalman filter to estimate various
state variables of a reactor such as neutronic flux, concentration
of delayed neuron precursors, average fuel temperature, coolant
temperature inside the reactor and coolant temperature entering
the reactor core. Bhatt et al. (2013) reported Extended Kalman Fil-
tering (EKF) technique for online reactivity estimation of the
nuclear reactor and justified merits of the EKF technique over con-
ventional IPK like technique. Silva et al. (2015) demonstrated sim-
ulation results for reactivity estimation during reactivity initiated
accidents using EKF technique. Shimazu and van Rooijen (2014)
reported qualitative performance comparison between IPK and
EKF techniques. Peng et al. (2016) demonstrated comparative study
of two EKF techniques using different Jacobian structures. Ygane
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and Ansarifar (2017) reported EKF technique to estimate the poi-
sons’ concentrations in the PWR nuclear reactors based on the reac-
tor powermeasurement. They have carried out a comparative study
of the results obtained from the continuous time EKF with those
from KF and Luenberger observer. An important feature of the Kal-
man filter algorithm is that almost all the available information
about the system can be used to improve estimator’s performance.

In past few decades wavelets and filter bank theory have
emerged as an effective way for multiscale analysis of the signals
and systems (Daubechies, 1992; Strang and Nguyen, 1996;
Vetterli and Strang, 1994; Torrence and Compo, 1998; Crouse
et al., 1998). A wavelet based Kalman filter for estimation of ran-
dom signals from multiscale decomposition has been presented
by Hong et al. (1998). They reported an interesting way for simul-
taneous decomposition and estimation for a class of autonomous
systems. In this article we move one step further to design a
multiscale EKF algorithm for a multivariable nonlinear system in
general and use it for estimation of the state variables of a nuclear
reactor. Motivation for this work stems from the fact that a nuclear
reactor is a nonlinear multiscale system in which system states
with widely varying dynamics evolve simultaneously. It is demon-
strated that an underlying multiscale nonlinear model is likely to
capture these modes of the evolution better than that by a conven-
tional model in single resolution.

In this paper, a mutliscale model structure is formulated by pro-
jecting system states on Haar scaling and wavelet functions as basis
and EKF algorithm is implemented on the systemmodel in projection
space. The proposed algorithm is tested and its performance is com-
pared with the standard EKF algorithm for the data sets obtained
from a research reactor. From the simulation results, it is found that
if decomposition is performed up to the certain scale, the multiscale
EKF algorithm outperforms the standard EKF algorithm.

The rest of the paper is organized as follows. Section II describes
design methodology used for the estimation purpose. Section III
describes simulation results for the dataset generated by known
reactivity variation and experimental datasets collected from a
research reactor. Conclusions are drawn in section IV to indicate
major achievements of the work.

2. Design methodology

In this section, state estimation using EKF and extension of this
technique for the multiscale model is presented. The point kinetics
model (Hetrick, 1971) assuming small change in the reactivity is
used for the purpose of estimation. It can be expressed as:

_n ¼ q� b
l

� �
nþ

X6
i¼1

kiCi ð1Þ

_Ci ¼ bi

l
n� kiCi; i ¼ 1;2; � � � ;6 ð2Þ

where state variables q;n and Ci indicate reactivity, neutronic
power and delayed neutron precursor concentration of the ith
group respectively. bi and ki are fraction and decay rate of the

delayed neutron precursors of the ith group with b ¼ P6
i¼1bi. l

denotes prompt neutron lifetime.
Reactivity in (1) is an input to the system which is generally

unknown and it is approximated by a random walk model
(Maybeck, 1982), i.e.,
_q ¼ 0: ð3Þ

2.1. Estimation using EKF

The Kalman Filter is a predictor–corrector type optimal state
estimator which works with the assumption that process uncer-

tainties and measurement noise have Gaussian distribution. The
algorithm consists of two steps. In the first step, current estimate
of the state variables and error covariance are forwarded into next
time instance. In the next step, new measurement information is
fused with the current estimate such that the covariance of error
becomes minimum.

In order to employ EKF, the reference model given by (1) needs
to be transformed into the state space form as:

_x ¼ f ðxÞ ¼ Fnx ð4Þ
where the matrix Fn and the state vector x are defined as:

Fn ¼

�b
l k1 k2 � � � k6 n
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b6
l 0 0 � � � �k6 0
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ð5Þ

x ¼ n C1 C2 C3 C4 C5 C6 q½ �> ð6Þ
The superscript > denotes transpose of a vector. System repre-

sented by (4) is nonlinear due to the presence of the state variable
n in Fn as well as in state vector x. Jacobian of this nonlinear system
can be defined as:

F ¼ @f ðxÞ
@x

ð7Þ

All the elements of matrix F will be same as the corresponding
elements of the matrix Fn except the element Fð1;7Þwhich is given
as Fð1;7Þ ¼ n

l .
In order to apply EKF in discrete domain, (4) must be trans-

formed into a set of difference equations. If sampling is carried
out at uniform interval of Ts seconds, set of difference equations
can be written as

xk ¼ Un;k�1xk�1 þwk�1

Un;k ¼ eFN;kTs
ð8Þ

where the subscript k denotes the sampling instant. w is the system
uncertainty which is assumed to have zero mean and covariance Q.
Fn;k denotes the system matrix Fn defined by (5) at kth sampling
instant. Similarly, discretization of Jacobian matrix is represented
by Uk ¼ eFkTs where Fk denotes the Jacobian matrix F defined by
(7) at the kth sampling instant. The measurement process is gov-
erned by the following equation:

zk ¼ Hxk þ vk ð9Þ
where v is measurement noise with zero mean and covariance R
and

H ¼ 1 0 0 0 0 0 0 0½ �: ð10Þ
Equations for two step prediction-correction algorithm of EKF

can be written as follows Sorenson (1985):
State Prediction:

x̂�k ¼ Un;k�1x̂þk�1 ð11Þ

P�
k ¼ UkP

þ
k�1U

>
k þ Qk ð12Þ

where x̂�k is a priori estimate of the state at instant k given the
knowledge of the process prior to instant k; x̂þk�1 is a posteriori esti-

mate of the state at instant k� 1. P�
k ¼ E x̂�k � xk

� �
x̂�k � xk
� �>h i

is a

priori estimate of the error covariance at instant k and
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