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a b s t r a c t

For the important applications which need carry out many times of neutron diffusion calculations such as
the fuel depletion analysis and the neutronics-thermohydraulics coupling analysis, fast and accurate
solutions of the neutron diffusion equation are demanding but necessary. In the present work, the
certified reduced basis finite element method is proposed and implemented to solve the generalized
eigenvalue problems of neutron diffusion with variable cross sections. The order reduced model is built
upon high-fidelity finite element approximations during the offline stage. During the online stage, both
the keff and the spatical distribution of neutron flux can be obtained very efficiently for any given set of
cross sections. Numerical tests show that a speedup of around 1100 is achieved for the IAEA
two-dimensional PWR benchmark problem and a speedup of around 3400 is achieved for the three-
dimensional counterpart with the fission cross-sections, the absorption cross-sections and the scattering
cross-sections treated as parameters.

� 2017 Elsevier Ltd. All rights reserved.

1. Introduction

The multi-group diffusion approximation for the transport of
neutrons has been widely used in reactor analysis. Through intro-
ducing some hypothesis such as that the neutrons can be grouped
into energy ranges (groups) and that the distribution of the neu-
tron velocity vectors is independent of the direction, the neutron
transport equation can be reduced to a group of much simpler dif-
fusion equations and several techniques such as the modern nodal
methods(Cho, 2005), the finite difference method and the finite
element method (Kang and Hansen, 1973; Kavenoky and Lautard,
1982; Adams and Martin, 1992; Wareing et al., 2001), have been
well developed to solve the partial differential equations.
Considering a coarse mesh (�10 cm) is usually sufficient for such
techniques, the computational cost is generally low and acceptable
for routine analysis. However, high requirement for computation
efficiency is yet to be satisfied for some important applications
which need carry out many times of calculations such as fuel
depletion analysis, three dimensional core analysis with move-
ment of control rods or the neutronics-thermohydraulics coupling
analysis. Challenges are even demanding if more elaborate approx-
imations, such as the simplified PN (i.e., SPN) method, are adopted.
It is interesting to note that although the neutron diffusion

equations have to be solved many times in these applications,
the mathematical form of the equations remains the same and only
the coefficients (i.e., the macro cross-sections) vary. If the varying
coefficients are treated as parameters, the neutron diffusion equa-
tions can thus be parametrized and the computational cost can be
effectively reduced by some model reduction techniques such as
the proper orthogonal decomposition, the adaptive cross approxi-
mation, the empirical interpolation method and the reduced basis
finite element (Quateroni and Rozza, 2014).

Among the various reduced order methods (ROMs), the certified
reduced basis finite element method (RB-FEM) (Hesthaven et al.,
2016; Quarteroni et al., 2016) has witnessed a spectacular effer-
vescence in the past decade. Its high efficiency as well as the guar-
anteed accuracy are ensured by a full decoupling of the finite
element scheme and the reduced order model through an offline-
online procedure. The complexity of the offline stage depends on
the complexity of the finite element approximation of the parame-
trized partial differential equation, while the complexity of the
online stage depends solely on the complexity of the reduced order
model. When combined with the posteriori error estimation, the
online stage guarantees the accuracy of the reduced order model.
Sartori et al. (2016) has successfully applied the RB-FEM to simulate
the nuclear reactor control rods movement and obtained a fast-
running prediction of reactivity and neutron flux distribution with
the geometric domain parametrized. However, the application of
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the promising method is still rare in the domain of nuclear
engineering.

In the present work, we apply the RB-FEM to solve the general-
ized eigenvalue problem with the neutron diffusion equations
parametrized by the macro cross-sections. A reduced set of basis
is chosen by using the greedy sampling strategy. And then approx-
imate but sufficiently accurate solutions can be evaluated quickly
for any given set of cross sections. Two standard examples, i.e.,
the IAEA two-dimensional and three-dimensional pressurized
water reactor (PWR), are used to test and examine the built order
reduced model.

2. Parametrized neutron diffusion equation

Only the stationary multi-group neutron diffusion equation is
considered in the study,
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For group g: Ug is the neutron flux, Dg is the diffusion coeffi-
cient,

P
f ;g is the fission cross section, v is the number of neutrons

emitted per fission, vg is the fission spectrum,
P

r;g is the removal
cross section, and

P
s;g0!g is the scattering cross section from group

g to group g0 and Keff is the effective multiplication factor. In the
present study, only the fission cross section, the removal cross sec-
tion and the scattering cross section are treated as parameters con-
sidering they are most sensitive to the burnup, the temperature of
the fuel and the temperature of the coolant. Thus the parameter

vector can be represented by l ¼ P
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P
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P
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h i
.

The equation above is augmented by the albedo boundary
condition,

DgrUg � nðrÞ þ 1
2
1� b
1þ b

Ug ¼ 0 ð2Þ

where n(r) denotes the normal direction of the boundary(Fig. 1).
Reflectivity b is defined as the ratio of the incoming current with
the outgoing current:

b ¼ J�g
Jþg

ð3Þ

To represent the vacuum boundary condition, the reflectivity is
usually set to be a small non-zero value, i.e. b = 0.031758 (Hébert,
2010). To represent a zero incoming current condition, b should be
set to be 1.

3. RB method for generalized eigenvalue problems

3.1. Finite element Formulation of the generalized eigenvalue problem

Ignoring the external neutron source and the weak form of Eq.
(1) can be written as,Z
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where X and @X represent the domain of the problem and the
corresponding boundary, respectively.v 2 V is the test function
and V is a Hilbert space with an induced norm k � kV ¼ ffiffiffiffiffiffiffiffiffiffiffið�; �ÞV

p
.

The approximate solution of the neutron flux can be expressed
as the combination of the basis functions fui; i ¼ 1;2; . . . ;Nvg, i.e.,
Ug ¼

PNv
j¼1u

g
j �uj where ug

j is the coefficient to be sought and Nv is
the number of basis functions. According to the Galerkin finite ele-
ment method, the test function can be expressed as v ¼ PNv

j¼1bj �uj

where bj is an arbitrary constant. Substitute the discrete forms of
Ug and v into Eq. (4) and notice the arbitrariness of bj, one has,
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Let
P

r;g ¼
P

a;g þ
PG

g0–g

P
s;g!g0and incorporate the albedo

boundary condition (i.e., Eq. (2)),
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In the case of a two-group problem, i.e., G ¼ 2, Eq. (6) can be
written in the matrix form as,

Au ¼ Keff Bu ð7Þ
where A and B can be affinely decomposed as,

A ¼ A11 A12

A21 A22

� �
¼ v

X
f ;1

A11 0
A21 0

� �
þ v

X
f ;2

0 A12

0 A22

� �
ð8Þ

B ¼ B11 þ D 0
0 B22 þ D

� �
þ

X
s;2!1

0 B12

0 0

� �
þ

X
s;1!2

0 0
B21 0

� �
ð9Þ

u ¼ u1
1;u

1
2; . . . ;u

1
NV
;u2

1;u
2
2; . . . ;u

2
NV

� �T
2 R2NV�1 ð10Þ

A11ði; jÞ ¼ A12ði; jÞ ¼
Z
X
v1ðuj �uiÞdX ð11Þ

A21ði; jÞ ¼ A22ði; jÞ ¼
Z
X
v2ðuj �uiÞdX ð12Þ

B11ði; jÞ ¼
Z
X
ðD1 � ruj � rui þ

X
r;1
uj �uiÞdX ð13Þ

n(r) 

reactor 

Fig. 1. Schematic of the boundary condition.
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