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a b s t r a c t

The Variational Nodal Method (VNM) is generalized for heterogeneous nodes and applied to four kinds of
problems including Molten Salt Reactor (MSR) core problem with continuous cross section profile,
Pressurized Water Reactor (PWR) control rod cusping effect problem, PWR whole-core pin-by-pin prob-
lem, and heterogeneous PWR core problem without fuel-coolant homogenization in each pin cell. Two
approaches have been investigated for the treatment of the nodal heterogeneity in this paper. To concen-
trate on spatial heterogeneity, diffusion approximation was adopted for the angular variable in neutron
transport equation. To provide demonstrative numerical results, the codes in this paper were developed
in slab geometry. The first method, named as function expansion (FE) method, expands nodal flux by
orthogonal polynomials and the nodal cross sections are also expressed as spatial depended functions.
The second path, named as finite sub-element (FS) method, takes advantage of the finite-element method
by dividing each node into numbers of homogeneous sub-elements and expanding nodal flux into the
combination of linear sub-element trial functions. Numerical tests have been carried out to evaluate
the ability of the two nodal (coarse-mesh) heterogeneous VNMs by comparing with the fine-mesh homo-
geneous VNM. It has been demonstrated that both heterogeneous approaches can handle heterogeneous
nodes. The FE method is good at continuous-changing heterogeneity as in the MSR core problem, while
the FS method is good at discontinuous-changing heterogeneity such as the PWR pin-by-pin problem and
heterogeneous PWR core problem. For problems with only one or two discontinuity points such as the
PWR control rod cusping effect problem, both of the two methods can catch the effect with high
efficiency.

� 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Modern nodal methods play an important role in reactor core
neutronics calculation due to its high computation efficiency and
accuracy (Wagner and Koebke, 1983). However, traditional nodal
methods usually require cross-section homogenization within
each node which unavoidably introduces errors or reduces the
computational efficiency in the following scenarios.

Firstly, in new reactor design such as Molten Salt Reactor (MSR),
the fluid fuel is continuously flowing. Continuous temperature and
nuclide density distributions result in continuous cross section dis-
tribution in space especially in axial direction. Volume- or approx-
imate flux-volume-weighted homogenization scheme within each
node is needed if traditional nodal methods are employed. How-
ever, if we adopt volume-weighted homogenization scheme for

the nodes, it will introduce obvious error to the flux distribution.
In addition, accurate flux distribution cannot be obtained even
the approximate flux-volume-weighted homogenization scheme
is employed. Some tests have been done in the ‘Results’ part of this
paper and we can find the most effective way for traditional nodal
methods to reduce the error caused by homogenization is adopting
fine nodal mesh, which will reduce the computational efficiency
unfortunately.

Secondly, in the Pressurized Water Reactor (PWR) core, control
rods keep moving along the axial direction with a step size of about
2 cm, while the nodal size of neutronics simulation is usually about
20 cm. It is common to have one or more control rods partially
inserted into the corresponding nodes. In this case, a single node
would consist of different materials with different macroscopic
cross sections within the framework of the traditional two-step
simulation method. The numerically simulated curve of control
rod worth is not even a smooth curve but with a lot of wiggles.
It is the so-called control rod cusping effect. Since 1980s, many
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methods have been investigated to eliminate it, such as
flux-volume-weighted method (Yamamoto, 2004; Dall’Osso,
2002) and adaptive mesh method (Zhang, 2014). The former has
to obtain an approximated flux distribution, while the later has
to regenerate the spatial mesh after each control rod movement
to avoid the appearance of heterogeneous nodes.

Thirdly, traditional PWR core computation employs two-step
scheme: lattice calculation to provide assembly-homogenized
cross sections, then core diffusion calculation and pin-power
reconstruction to provide pin-power profile within the core. To
reduce the error introduced by assembly homogenization and
pin-power reconstruction, the following pin-by-pin scheme has
caught the concentration: assembly calculation with pin-cell
homogenization and then whole-core pin-by-pin calculation. Sev-
eral pin-by-pin calculation codes have been developed, such as
SCOPE2 (Tatsumi and Yamamoto, 2003) and EFEN (Li et al.,
2014). However, the whole-core pin-by-pin problem consists of
millions of meshes. Computational efficiency becomes one of main
problems in whole-core pin-by-pin calculation. For example, a
PWR can be divided into 10 million spatial meshes. Together with
the SP3 approximation and 4 energy groups, the calculation time is
about 24 h for a single CPU (Yang et al., 2014) if there is no
acceleration.

Fourthly, in recent years, High-Fidelity computing aims to carry
out whole-core heterogeneous simulations with homogenization
fully eliminated. In High-Fidelity computing of PWR, the hetero-
geneity within each pin-cell requires an extremely refined mesh
which leads to the total number of spatial meshes becoming bil-
lions. The increase of spatial meshes does not only increase the
number of unknowns, but also slows down the convergence. In this
case, the convergence can be significantly improved if a heteroge-
neous coarse-mesh nodal method can be employed to replace the
fine mesh methods.

To overcome difficulties from the above four scenarios, tradi-
tional homogeneous nodal methods are expected to be generalized
into heterogeneous nodal methods to maintain the computing effi-
ciency with high accuracy. Among those homogeneous nodal
methods, Variational Nodal Method (Palmiotti et al., 1995)
(VNM) is chosen due to its advantages (Lawrence, 1986; Wagner,
1989; Li et al., 2015) compared with the others. VNM is based on
a functional for even-parity transport equation and the nodes are
coupled together by odd-parity Lagrange multipliers. Response
matrices are obtained by using a Ritz procedure and the flux, cur-
rent and source are expanded by orthogonal polynomials. The
exclusion of the transverse integration technique in VNM guaran-
tees its advantages in accuracy.

Fanning and Palmiotti (Fanning and Palmiotti, 1997) developed
a heterogeneous nodal method based on VNM for piece-wise con-
stant heterogeneous nodes. The even- and odd-parity fluxes are
expanded by polynomials. Throughout the derivation, the func-
tional for the heterogeneous node is obtained which has the same
form as that in homogeneous VNM. To calculate the response
matrices, the heterogeneous node is divided into a number of
homogeneous elements and then the integrals over the node are
divided into a set of homogeneous integrals. This method has high
efficiency with low expansion order. However, when the configu-
ration and material is complicated within the heterogeneous node,
the flux will change sharply in space. As the flux is expanded by
polynomials over the entire node in this method, it’s difficult for
it to describe the flux distribution with sharp gradient accurately
over the node. Smith (Smith et al., 2003) developed another
heterogeneous Variational Nodal Method also for piece-wise con-
stant heterogeneous nodes. It divides each node into
sub-elements in which the cross sections are constants, and
expands the flux by finite trial functions in space and spherical
or simplified spherical harmonics in angle. In this method,

high-order angular approximation is required to obtain accurate
results in the problems with sharp flux gradient throughout the
geometry, while the results are less sensitive to the refinement
of the sub-elements. The main disadvantage of this method is the
low computational efficiency when high spherical harmonics
expansion order is adopted. Another heterogeneous nodal method
for solving diffusion equation was developed by Makoto Tsuiki
(Tsuiki and Hval, 2002). The most distinctive feature of this method
is that the flux in a node is expanded into a set of functions which
are numerically obtained by single-assembly calculations without
assembly homogenization. Highly accurate results can be obtained
because the assembly heterogeneous effect is taken into account in
the single-assembly calculation. Besides, the accuracy of this
method can be improved simply by increasing the order of expan-
sion. However, computing the numerical expansion functions
becomes an additional burden of the method.

This paper mainly concentrates on the spatial distribution of the
flux and power affected by the heterogeneous node with diffusion
approximation adopted. To assess the performances of different
methods for different problems, we choose the one-dimensional
(1D) slab geometry. In this paper, two approaches are investigated
for the treatment of the nodal heterogeneity. In function expansion
(FE) method, the flux is expanded into the sum of polynomials and
the cross section is also expressed as a function of space. Addition-
ally, unlike the method developed by Fanning and Palmiotti, the
heterogeneous nodes needn’t to be divided into homogeneous ele-
ments which means this method can treat both continuous and
piecewise continuous cross section distribution. The finite
sub-element (FS) method employs finite-element basis functions
to expand flux in each node. In this method, the heterogeneous
node should be divided into homogeneous sub-elements.

The rest of this paper is organized as following. In Section 2, the
theories of two heterogeneous VNMs including the FE method and
the FS method are introduced in 1D slab geometry for
neutron-diffusion equation. In Section 3, the two methods are
applied to the four kinds of problems: MSR core problem, PWR
control rod cusping effect problem, PWR pin-by-pin problem and
heterogeneous PWR core problem. The capabilities and limitations
of these two methods are then discussed.

2. Theory

This basic theory of homogeneous VNM is presented in
Palmiotti et al. (1995) and Li et al. (2015) clearly. Based on this,
Sections 2.1 and 2.2 introduce the treatments for heterogeneous
nodes in FE method and FS method respectively. The following the-
ory is derived in 1D slab geometry with diffusion approximation.

2.1. The function expansion heterogeneous Variational Nodal Method

To treat the heterogeneous nodes in FE method, the cross sec-
tions are assumed to be functions of space. Then the diffusion func-
tional for each node can be written as

Fv ½U;J�¼
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where U is the scalar flux (cm�2�s�1); D is the diffusion coefficient
(cm); Rt is the total cross section (cm�1); Rs is the within-group
scattering cross section (cm�1); S is the source term (cm�3�s�1)
including isotropic scattering and fission; c represents the surfaces
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