
Prediction and uncertainty analysis of power peaking factor by cascaded
fuzzy neural networks

Ju Hyun Back, Kwae Hwan Yoo, Geon Pil Choi, Man Gyun Na ⇑, Dong Yeong Kim
Department of Nuclear Engineering, Chosun University, 309 Pilmun-daero, Dong-gu, Gwangju 61452, Republic of Korea

a r t i c l e i n f o

Article history:
Received 19 October 2016
Received in revised form 26 July 2017
Accepted 5 August 2017

Keywords:
Cascaded fuzzy neural network (CFNN)
Local power density (LPD)
Power peaking factor
Uncertainty analysis

a b s t r a c t

Nuclear reactor cores should be maintained within various safety limits such as the local power density
(LPD). Therefore, a detailed three-dimensional core power distribution monitoring is required during
reactor operation. In addition, LPD must be predicted to prevent nuclear fuel melting. In this study, the
most important parameter related to LPD—the power peaking factor—was predicted. A cascaded fuzzy
neural network (CFNN) methodology was utilized to predict the power peaking factor in the reactor core.
A CFNN model was developed using the numerical simulation data of the optimized power reactor 1000
and its performance was analyzed. Additionally, its uncertainty analysis was conducted to determine the
prediction accuracy of the CFNN model. The prediction intervals were found to be pretty narrow, which
confirms that the predicted value is reliable. The accuracy of the proposed CFNN model proves to be able
to assist nuclear reactor operators in monitoring the power peaking factor.

� 2017 Elsevier Ltd. All rights reserved.

1. Introduction

The integrity of nuclear fuel rods during reactor operation
should be assured within various safety limits for safe reactor
operation such as the local power density (LPD) and departure
from nucleate boiling ratio (DNBR). Therefore, a three-
dimensional (3D) core power distribution is monitored during
nuclear reactor operation.

The LPD and DNBR must be calculated to conduct two key func-
tions of the core protection calculator system (CPCS) and the core
operation limit supervisory system (COLSS) installed at the opti-
mized power reactor 1000 (OPR1000).

COLSS provides information about monitoring the limiting con-
ditions for operation to reactor operators. Meanwhile, CPCS con-
ducts nuclear reactor protection functions and calculates the
important safety parameters such as LPD and DNBR. If the LPD
and DNBR exceed their safety limits, CPCS halts the plant operation
by an automatic reactor trip signal. CPCS due to its conservative
nature generates higher LPD and lower DNBR values than COLSS.
CPCS is adjusted periodically by the accurately calculated COLSS
values.

LPD must be predicted to keep nuclear fuel rods from melting.
Particularly, LPD at the hottest position of the nuclear reactor core
is more important to prevent the fuel melting at that position and

is directly related to the power peaking factor (PPF) that is defined
as the thermal output of the hottest fuel rod over the average ther-
mal output of fuel rods. PPF is one of the most important factors,
which must be continuously monitored from a safety aspect.

PPF was estimated accurately by using artificial intelligence
methods such as fuzzy neural networks (FNN) (Na et al., 2004)
and a support vector regression (SVR) method (Bae et al., 2008;
Bae et al., 2009). It was known that the SVR is superior to the
FNN. However, the SVR requires too much computational capabil-
ity to optimize itself. The aim of the present study is to calculate
PPF in a nuclear reactor core by using a cascaded fuzzy neural net-
work (CFNN) model under various operating conditions of the
nuclear reactor core. The CFNN model goes through several stages
to infer the PPF value by the process of repeatedly adding FNN
modules. Since the reasoning outcome in a preceding stage is
transferred continuously to the subsequent stage as a fact, the
CFNN has a characteristic that advances the inference mechanisms
as the reasoning stage proceeds (Duan and Chung, 2001). There-
fore, in this paper, the CFNN model is applied to calculate PPF in
a nuclear reactor core. The reactor operation condition is expressed
by nuclear reactor core power, axial offset (AO) indicating an axial
neutron flux shape, reactor core inlet temperature, reactor coolant
mass flowrate through a reactor core, pressurizer pressure, and
various control rod positions.

The proposed CFNN model, which is a PPF prediction algorithm,
is optimized to achieve good monitoring performance on LPD and
is verified by using the simulated operating data collected from a
number of numerical simulations of OPR1000.
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2. Cascaded fuzzy neural networks

2.1. Fuzzy neural network

FNN is referred to as the fuzzy inference system (FIS) combined
with a neural network of outstanding learning capability. A fuzzy
rule in the FIS can be expressed as the following well-known if-
then rule:

If x1ðkÞ is Ai1ðkÞ AND � � � AND xmðkÞ is AimðkÞ; then yiðkÞ is f i xðkÞð Þ;
ð1Þ

where

xjðkÞ: jth input signal values ðj ¼ 1; � � � ; mÞ at data point k
m: number of input signals

Aij(k): fuzzy membership functions of the ith fuzzy rule and jth

input signal

yiðkÞ: ith fuzzy rule output

f iðxðkÞÞ ¼
Xm
j¼1

aijxjðkÞ þ ai0 ð2Þ

xðkÞ ¼ ðx1ðkÞ; x2ðkÞ; � � � ; xmðkÞÞT ; k ¼ 1; 2; � � � ; Nt

Nt: number of training data

aij: weight of the ith fuzzy rule and jth input signal

ai0: bias of the ith fuzzy rule

The above FIS is the first-order Takagi-Sugeno-type FIS (Takagi
and Sugeno, 1985) where the output of a fuzzy rule is described as
a first-order polynomial of input signals as shown in Eq. (2). The
input and output data are assumed to be normalized. The present
studyuses the following symmetricGaussianmembership function:

Aij xjðkÞ
� � ¼ e� xjðkÞ�cijð Þ2=2s2ij ð3Þ

where

cij: center of a membership function Aij

sij: width of a membership function Aij

The predicted output of the FIS at data point k is computed by
weight-averaging all the outputs of fuzzy rules as follows:

byðkÞ ¼ Xn
i¼1

w�iðkÞyiðkÞ ¼
Xn

i¼1

wiðkÞf iðxðkÞÞ ¼ wTðkÞ a; ð4Þ

where

wiðkÞ ¼ wiðxðkÞÞPn
i¼1wi xðkÞð Þ ð5Þ

wiðkÞ ¼
Ym
j¼1

AijðxjðkÞÞ ð6Þ

n: number of fuzzy rules

a ¼ a11 � � � an1 � � � � � � a1m � � � anm a10 � � � an0½ �T
wðkÞ ¼ w�1ðkÞx1ðkÞ � � �w�nðkÞx1ðkÞ � � � � � �w�1ðkÞxmðkÞ � � �w�nðkÞxmðkÞ w�1ðkÞ � � �w�nðkÞ� �T .
The predicted output for a data point is calculated from Eq. (4)

and the predicted outputs for all data points can be derived from
Eq. (4) and is expressed as follows:by t ¼ Wt a; ð7Þ

where

byt ¼ byð1Þ byð2Þ � � � byðNtÞ
� �T

Wt ¼ wð1Þwð2Þ � � � wðNtÞ½ �T

Fig. 1 describes a six-layered FNN (Kim et al., 2016).
The parameters included in the fuzzy membership function and

the parameter vector a should be optimized to accomplish a good
modeling performance. In this study, these parameters were opti-
mized using the two combined methods: the genetic algorithm
and the least squares method. The training data were prepared
to optimize the proposed FNN model. The test data were prepared
to verify the FNN model independently. The genetic algorithm
optimizes the parameters included in the fuzzy membership func-
tion. If the parameters in the fuzzy membership function are
known, the vector wðkÞ can be calculated. The genetic algorithm
uses the following fitness function that consists of the maximum
and root mean square (RMS) errors.

Fitness ¼ e�k1E1�k2E2 ; ð8Þ
where

E1: RMS error
E2: maximum error
k1, k2: their weighting values

After the membership function parameters have been opti-
mized first using a genetic algorithm and the matrix Wt has been
calculated, the resulting parameters a can be determined through
minimizing an objective function that is expressed as follows,
which is called the least squares method:
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Fig. 1. Fuzzy neural network.
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