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a b s t r a c t

In transport theory, adjoint-based partial derivatives with respect to mass density are constant-volume
derivatives. Likewise, adjoint-based partial derivatives with respect to surface locations (i.e., internal
interface locations and the outer system boundary) are constant-density derivatives. This paper derives
the constant-mass partial derivative of a response with respect to an internal interface location or the
outer system boundary and the constant-mass partial derivative of a response with respect to the mass
density of a region. Numerical results are given for a multiregion two-dimensional (r-z) cylinder for three
very different responses: the uncollided gamma-ray flux at an external detector point, keff of the system,
and the total neutron leakage. Results from the derived formulas compare extremely well with direct per-
turbation calculations.

� 2017 Elsevier Ltd. All rights reserved.

1. Introduction

It is well known that the adjoint equation in transport theory
provides an economical means of computing derivatives of a sys-
tem response to system parameters. It is also well known, though
not often remarked on, that adjoint-based partial derivatives with
respect to mass density (Greenspan, 1982; Favorite et al., 2017;
Bledsoe et al., 2011) are constant-volume derivatives. Likewise,
adjoint-based partial derivatives with respect to surface locations
(Bledsoe et al., 2011; Favorite and Bledsoe, 2010; Favorite and
Gonzalez, 2017) (i.e., internal interface locations and the outer sys-
tem boundary) are constant-density derivatives.

In this paper, we derive a formula for the constant-mass partial
derivative of a response with respect to an internal interface loca-
tion or the outer system boundary. We also derive two formulas for
the constant-mass partial derivative of a response with respect to
the mass density of a region. These formulas use the constant-
density partial derivatives with respect to surface locations and
the constant-volume partial derivatives with respect to densities,
which may be computed using adjoint methods or numerical dif-
ferences. The only surface perturbations that we consider are those
in which surfaces are translated along coordinate axes.

When relationships among thermodynamic properties are
derived, people are careful to denote the quantity that is held con-
stant in the partial differentiation (Black and Hartley, 1985; Bejan,
2016). This paper will adopt that specificity, and we recommend it
for all work with sensitivities in nuclear engineering.

This paper includes numerical comparisons for a two-
dimensional (r-z) cylinder that also demonstrate the correctness
of the regular adjoint-based derivatives for surface locations. Three
very different responses are considered: the uncollided gamma-ray
flux at an external detector point, keff of the system, and the total
neutron leakage. Adjoint-based partial derivatives for the neutron
problems were computed using the new SENSMG code (Favorite,
2017) at Los Alamos National Laboratory.

Section 2 presents the derivations of the constant-mass partial
derivatives. Section 3 presents results for numerical test problems.
Section 4 is a summary.

2. Derivations

Consider a radiation transport problem with some response of
interest R. We will be examining how R changes as the massm, vol-
ume V, and/or mass density q of any of the materials in the system
change. This treatment will ignore gasses and all temperature
dependencies. The equation of state for the materials is simply

q ¼ m=V : ð1Þ
The three equations for the total differential of Rwith respect to

mass, volume, and mass density are

dR ¼ @R
@m

� �
V

dmþ @R
@V

� �
m

dV ; ð2Þ

dR ¼ @R
@q

� �
V
dqþ @R

@V

� �
q
dV ; ð3Þ
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and

dR ¼ @R
@m

� �
q
dmþ @R

@q

� �
m

dq; ð4Þ

where the subscripts on the partial derivatives indicate the quanti-
ties to be held constant. Holding a volume constant implies holding
all of its bounding surfaces constant.

The derivations in this paper apply regardless of whether the
transport problem is homogenous or inhomogeneous (i.e., an
eigenvalue problem or a fixed-source problem). The derivations
also apply to diffusion theory or any physical system in which a
response depends on mass, volume, and density.

2.1. Constant-mass partial derivative with respect to interface location

In Eq. (2), we use

dm ¼ @m
@q

� �
V

dqþ @m
@V

� �
q
dV ¼ Vdqþ qdV ð5Þ

and

@R
@m

� �
V
¼ @R

@q

� �
V

@q
@m

� �
V
¼ 1

V
@R
@q

� �
V
; ð6Þ

yielding

dR ¼ 1
V

@R
@q

� �
V

ðVdqþ qdVÞ þ @R
@V

� �
m

dV

¼ @R
@q

� �
V

dqþ q
V

@R
@q

� �
V

dV þ @R
@V

� �
m

dV : ð7Þ

Subtracting Eq. (7) from Eq. (3) yields

0 ¼ @R
@V

� �
q
dV � q

V
@R
@q

� �
V
dV � @R

@V

� �
m
dV : ð8Þ

Factoring out the dV, setting the sum of the rest to zero, and rear-
ranging yields

@R
@V

� �
m

¼ �q
V

@R
@q

� �
V

þ @R
@V

� �
q
: ð9Þ

Because the volume V is fully specified as a function of the linear
dimensions, each linear dimension r can be written uniquely as a
function of V and the other dimensions. Therefore, use the chain
rule for each of the derivatives with respect to volume to yield

@R
@r

� �
m

@r
@V

� �
¼ �q

V
@R
@q

� �
V

þ @R
@r

� �
q

@r
@V

� �
; ð10Þ

and divide through by ð@r=@VÞ to yield

@R
@r

� �
m
¼ �q

V
@V
@r

� �
@R
@q

� �
V
þ @R

@r

� �
q
: ð11Þ

Now consider a particular internal interface, designated ri, as
shown in Fig. 1. On the negative side of interface ri (left or below
or ‘‘inside”) is region 1 with volume, mass, and mass density V1,
m1, and q1, respectively. On the positive side of interface ri (right
or above or ‘‘outside”) is region 2 with volume, mass, and mass
density V2, m2, and q2, respectively. The first term on the right side
of Eq. (11) becomes the sum of terms for regions 1 and 2.

Generalizing this concept to all regions j = 1,. . .,J that border
surface i yields

@R
@ri

� �
m
¼ �

XJ

j¼1

qj

V j

@Vj

@ri

� �
rk ;k–i

@R
@qj

 !
V

þ @R
@ri

� �
q
; ð12Þ

where subscripts V, m, and q without indices imply all volumes,
masses, and densities. Also, subscript ‘‘rk, k– i” means that all sur-

faces are held constant except ri. All the derivatives with respect to
ri in Eq. (12) correspond to moving ri in the positive coordinate
direction. Let n̂j be the outward unit normal vector for surface i rel-
ative to volume j and êi be the positive coordinate direction in
which ð@R=@riÞm and ð@Vj=@riÞrk ;k–i are calculated. If moving surface

ri in direction êi causes volume j to increase, then êi must be point-
ing outward. In this case êi � n̂j ¼ 1, and therefore

@Vj

@ri

� �
rk ;k–i

¼ ðAjÞêi � n̂j; ð13Þ

where Aj is the area of surface ri in contact with volume j. Likewise,
if moving surface ri in direction êi causes volume j to decrease, then
êi must be pointing inward, êi � n̂j ¼ �1, and Eq. (13) is still satisfied.
Using Eq. (13) in Eq. (12) yields

@R
@ri

� �
m

¼ �
XJ

j¼1

qjAj

V j

@R
@qj

 !
V

êi � n̂j þ @R
@ri

� �
q
: ð14Þ

Define the relative sensitivity of R to the mass density of region j
as (Greenspan, 1982; Favorite et al., 2017)

SR;qj
� qj

R
@R
@qj

 !
V

: ð15Þ

(Typically, the relative sensitivity is defined with a partial derivative
that is merely assumed to be the constant-volume partial deriva-
tive. Here, we are explicit.) Using Eq. (15) in Eq. (14) yields

@R
@ri

� �
m

¼ �R
XJ

j¼1

Aj

Vj
SR;qj

êi � n̂j þ @R
@ri

� �
q
: ð16Þ

The sensitivities to densities and the constant-density partial
derivative with respect to the surface location [on the right side
of Eq. (16)] can all be computed with adjoint-based methods.

If ri is the outer boundary, then there is no term in Eq. (16) for a
region outside of ri.

Eq. (16) represents the change in R as ri moves in the positive
coordinate direction with respect to the coordinate system. Eq.
(16) preserves the masses of all regions adjacent to ri (and there-
fore all masses in the system).

Fig. 1. Interface ri and the regions on either side of it.
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