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a b s t r a c t

Although the number of meshes and their distribution are important parameters that affect both compu-
tation resources and the accuracy of the numerical results, meshing of most of all computational prob-
lems still depends highly on the users’ experiences. In this paper, a deterministic adjoint-based
method of optimizing mesh distribution is proposed. The developed method is applied to a nuclear power
plant safety analysis. The mesh optimization was performed with 1D steady state cylindrical nuclear fuel
problem first. Radial and axial mesh distributions are optimized respectively. With no surprise, the opti-
mized mesh system performs superior than the same number of uniformly meshed system. However, it
was unexpected that the optimized mesh retains generality and therefore, the optimized mesh system
can be still the best mesh system for given number of meshes under different condition or even during
transient analysis. The authors applied the optimized mesh distribution to nuclear system safety analysis.
A large pressurized water reactor cold leg guillotine break (LBLOCA) scenario was analyzed and the con-
sequence of different mesh systems is investigated and discussed. From this preliminary study the use-
fulness and implication of the adjoint based mesh optimization method for the nuclear safety analysis is
uncovered.

� 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Nowadays, research works for improving the accuracy and
reducing the user-to-user variations for nuclear system analysis
codes, such as MARS-KS (Lee, 2007) RELAP-5 (Nuclear Regulatory
Commission, 2001) COBRA (Thurgood et al., 1983), are widely con-
ducted. As a part of the effort, there are attempts to utilize the glo-
bal optimization methods such as genetic algorithms (Tsai et al.,
2014; Marseguerra and Zio, 2001; Marseguerra et al., 2003;
Marseguerra et al., 2004) on many user-defined-parameters (UDPs)
to reduce uncertainties for using the nuclear system analysis codes.

System analysis codes typically solve discretized partial differ-
ential equations by using a method of uniform or empirical mesh-
ing method based on user’s judgement solely (Chung et al., 2010).
Meshing still depends highly on the users’ experiences, although
the number of nodes and size of each node are important parame-
ters that affect both computation resources and the accuracy of the
results. However, if we can optimize the node distribution that can
compute the most precise numerical solution of some problems
under limited computing resource, positive effects such as incre-

ment of numerical stability, minimized user dependency, and
increased reliability of the system analysis code can be expected.

In this study, a method for optimizing mesh distribution is pro-
posed. The proposed method uses adjoint base optimization
method (adjoint method) Errico, 1997; Cao et al., 2003 which is
one of the global optimization techniques. Furthermore, by apply-
ing the proposed methodology to a 1-D steady state cylindrical
nuclear fuel rod, the authors confirmed whether the suggested
method can give more accurate solution than that of the conven-
tional method of uniform meshing produces. As well, the opti-
mized result will be obtained by applying this meshing
technique to the existing code and will be compared to the results
produced from the uniform meshing method.

The developed method is applied to a nuclear fuel representing
the average core. The fuel is cylindrical shape and it is consisted of
fuel pellet, gap and cladding with uniform volumetric heat gener-
ation. The boundary condition is given as the coolant temperature.
Numerical solutions are calculated from an in-house 1D Finite Dif-
ference Method (FDM) code while neglecting the axial conduction.
The fuel radial node optimization was first performed to match the
Fuel Centerline Temperature (FCT) the best. This was followed by
optimizing the axial node which the Peak Cladding Temperature
(PCT) during steady state operation matches the best. After obtain-
ing the optimized radial and axial nodes, the nodalization is imple-
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mented into the system analysis code and transient analyses were
performed to observe the optimum nodalization performance.

2. Methodology

2.1. Adjoint based optimization method

The gradient of an object function at the design variable space
(sensitivity vector) is useful information for optimization. One
way to find the sensitivity vector is to compute differences over
the all elements of design variables. If original problem is gðx;pÞ
(g: object function, x: field vector. p: design variable vector), the

sensitivity vector dgðx;pÞ
dp can be obtained numerically (See Eq. (1)).

dgðx;piÞ
dpi

� gðx;pi þ piÞ � gðx; piÞ
pi

;pi 2 p ð1Þ

By this way, gðx; pi þ DpiÞ for every pi 2 p is required to get the
full sensitivity vector. This is equivalent to solving the original
problem np times. For large np, it is considerably very costly.

In this paper, the authors are proposing to use an adjoint based
optimization method. (adjoint method) Errico, 1997; Cao et al.,
2003 The adjoint method is a technique to obtain the sensitivity
vector with marginal increase in the computational cost of solving
the original problem.

Sensitivity vector is given as Eq. (2), where p is the design vari-
able vector, gðx;pÞ is the object function and x satisfies Ax ¼ b.
Dimension of x, b, p, A are (1, M), (M, 1), (1, P) and (M, M) are

dgðx;pÞ
dp

¼ gp þ gxxp ð2Þ

Ap ¼ @A
@pi

� �
; i 2 p

� �

gxxp ¼ gx½A�1ðbp � ApxÞ� ð3Þ

ðbp ¼ ð@b
@pi

Þ; i 2 pÞ

Eq. (3) can be re-written as Eq. (4), which is the dual problem of
Eq. (3).

gxxp ¼ kT ½ðbp � ApxÞ�; ATk ¼ gT
x ð4Þ

To obtain dgðx;pÞ
dp , Eq. (4) requires only one inverse-matrix calcula-

tion. This is much less costly than the traditional calculation
method of using the finite differences over the all elements of p.

2.2. 1D FDM fuel rod numerical scheme

The problem can be modeled as shown in Fig. 1. The 1D nuclear
fuel is composed of UO2 fuel pellet with uniform heat generation,
Zircaloy cladding, and the gap between them. There are four
boundary and interfacial matching conditions: Centerline symmet-
ric boundary, fuel-gap convection boundary, gap-cladding convec-
tion boundary, and cladding-coolant convection boundary. Coolant
bulk temperature is specified for the radial mesh optimization.

The 1D heat conduction equation with the volumetric heat
generation in a cylindrical geometry is shown in the following
equation. (Incropera et al., 2013)

Nomenclature

Latin letters
Cp heat capacity at constant pressure
q00 heat flux
q000 volumetric heat generation
k thermal conductivity
T temperature
t time
r radial coordinate
z axial coordinate
h convection heat transfer coefficient
N number of nodes
n number of elements of subscripted vector
A matrix
b source vector
x field vector
p design parameter vector
g object function
C constant
V sensitivity vector
norm second-order norm
max maximum value
min minimum value
abs absolute value
O(⁄) computational complexity of ⁄

Greek letters
@ partial difference
r del operator
r2 laplacian operator (r � r )
D difference
q density
k Lagrange multiplier

Subscripts
gap gap
fuel fuel
Clad cladding
Coolant coolant
prev previous
next next
step step
rf relaxation factor
i, j numbering

Superscripts
T transpose matrix
�1 inverse matrix

Fig. 1. 1D lumped fuel-cladding system problem concept picture.
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