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a b s t r a c t

The probability distribution of neutron numbers in a symmetric subcritical reflected fissile sphere is
numerically obtained using a one-speed diffusion approximation to the underlying backward Master
equation. Employing an accurate space–time discretisation scheme, the coupled but closed system of
equations for the number probabilities is sequentially solved as a function of position and time of an
injected neutron. This solution is then used to construct the corresponding distributions for a random
intrinsic source of arbitrary multiplicity. Numerical results clearly demonstrate the importance of includ-
ing spatial dependence in the neutron number probability distributions, which show complex spatial
behaviours that cannot be encapsulated in a point model system. This is especially evident in the case
of the multi-region model where the presence of a reflector is seen to alter the approach to steady state
of the number probabilities, while the material interface has a significant effect on the magnitude of the
probabilities, both locally and globally.

� 2017 Published by Elsevier Ltd.

1. Introduction

Measurement and modelling of neutron multiplicity distribu-
tions play a key role in the identification and characterisation of
small samples of special nuclear material that is important in the
nonproliferation and safeguards space (Böhnel, 1985; Enqvist
et al., 2006; Mattingly, 2012). A knowledge of the neutron multi-
plicity distribution makes possible the estimation of integral prop-
erties such the strength of the inherent random source, and the
mass and composition of an unknown sample (Mattingly, 2012;
Enqvist et al., 2006). Moreover, because the neutronic signature
of fissile materials deviates from the Poisson distribution, multi-
plicity distributions can help distinguish background neutrons
arising from ða; nÞ reactions from those arising from fission chains.

Computational analysis of neutron counting in nuclear safe-
guards, with detailed physical geometry representation and
accounting for energy dependence of neutron interactions and
source spectra, has largely relied on either analog Monte Carlo sim-
ulation of the branching process (Pozzi et al., 2003), which is
expensive and primarily useful for benchmarking purposes, or on
the construction of low-order statistical moments using determin-

istic codes to obtain parameters such as the Feynmann-Y counting
statistic from which integral properties of the sample can be
inferred (Mattingly, 2012). An alternative approach is provided
by the underlying Master equation for the probability distribution
of neutron number under general conditions, but the complexity of
this formulation makes numerical solution intractable for distribu-
tions of large neutron numbers. However, as the Master equation is
equivalent to a coupled but closed set of equations for the neutron
number distribution of successively higher order, direct numerical
solution becomes feasible if the order of the neutron number nec-
essary to adequately characterise the distribution is not high, typ-
ically in the tens. These are precisely the conditions that arise
when dealing with small, highly subcritical samples and hence
the approach is relevant to nonproliferation and safeguards work.
Thus far, however, numerical work based on the Master equation
has been restricted to computing neutron and photon distributions
in lumped or point systems for a single source realisation (Enqvist
et al., 2006). While useful for developing insight into the statistics
of neutron multiplication and quantifying the effect of random
sources, lumped models are unable to describe spatial effects orig-
inating from nonuniformity in the distribution of fissile material
and the presence of neutron reflectors and absorbers. To describe
such nonlocal phenomena it is necessary to treat spatial depen-
dence explicitly in the Master equation. The objective of this work
is to develop such a generalisation using the one-speed diffusion
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approximation and demonstrate the feasibility of obtaining
numerical solutions for neutron numbers of varying orders in pla-
nar and spherical geometries. We conclude this discussion on
numerical methods by mentioning other methods which have
been developed to compute the neutron number probability distri-
butions. Work by Prasad and Snyderman (2012) developed a recur-
sive point model for subcritical systems regarding the time-
asymptotic neutron number probability distribution of neutrons
which escape a multiplying medium and are therefore available
for detection. Additionally, Abate and Whitt (1992), Williams
(2016) and Chambers et al. (2016) have used numerical inversion
of the generating function transform to obtain the neutron number
probability distributions. However, this technique has only been
applied to lumped models and requires the generating function
to be known in closed form. It is not yet clear if this approach
can be efficiently extended to handle non-lumped systems.

In this paper, we develop a time dependent, spatially extensive
backward model for the neutron number probabilities in the one-
speed diffusion approximation and investigate it in both the case of
a single initiating neutron and additionally a constantly emitting
source. The distributions obtained are benchmarked using semi
analytical solutions for special cases in the slab model for the sin-
gle initiating neutron case. The numerical scheme is then applied
to a one dimensional symmetric reflected fissile sphere containing
an intrinsic random source of general multiplicity. Extensive
numerical results are presented and discussed for the neutron
number distributions in various subregions of the system, for dif-
ferent neutron injection locations as well as with a distributed
source, that demonstrate unequivocally the importance of explic-
itly describing spatial heterogeneities in complex multiplying
media with weak sources.

2. Backward master equation formulation

We consider a convex multiplying body of volume V � R3 with
bounding surface @D � R2 in which the neutron population evolves
stochastically with time subject to random scattering, parasitic
capture, and fission events with known probability laws. Restrict-
ing considerations to single energy neutrons, so that the neutron
phase space is characterised by spatial position~r 2 V and direction

of travel ~X 2 S2, we define pnðR; tf ;~r; ~X; tÞ;n ¼ 0;1;2 . . ., as the prob-

ability of finding n neutrons in phase space region R � V � S2at a
time tf conditioned on a single neutron existing in the body at an

earlier time t at position ~r with direction vector ~X. Then, under
the reasonable assumption that the neutron population evolves
as a Markov process, pnð� � �Þ satisfies the Chapmann–Kolmogorov
equation or, when expressed in differential form, the more com-
monly known backward Master equation (Pál, 1962; Bell, 1965;
Pázsit and Pál, 2008). The backward Master equation is an open
system of coupled nonlinear integro-differential equations for the
number distribution, and is more useful when expressed in terms

of the probability generating function GðR; tf ; z;~r; ~X; tÞ defined by
the z-transform (Bell, 1965):

GðR; tf ; z;~r; ~X; tÞ ¼
X1
n¼0

znpnðR; tf ;~r; ~X; tÞ; ð1Þ

or, more conveniently, in terms of the modified generating
function:eGðR; tf ; z;~r; ~X; tÞ ¼ 1� GðR; tf ; z;~r; ~X; tÞ: ð2Þ

Suppressing the explicit dependence on R and tf for notational
convenience, the governing equation for the generating function
is given by Bell (1965):
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where Rt is the total cross section which is the sum of scattering, Rs,
capture, Rc , and fission, Rf , cross sections. With pk; k ¼ 0;1; . . .K,
defined as the probability that k neutrons emerge from a fission
event, in other words, the neutron multiplicity, the factorial

moments are given by vk ¼
PK

i¼0iði� 1Þði� 2Þ . . . ði� kþ 1Þpi and
are defined such that v2=2! is the mean number of pairs, v3=3! is
the mean number of triplets and so on. The nonlinear terms in Eq.
(3), of highest degree equal to the maximum number of neutrons
K emitted in fission, reflect the underlying branching process and
is a source of significant complication for numerical solutions of
the backward model, which will be discussed at length later in this
paper. In addition to single energy neutrons and the assumption of
isotropic scattering, it is assumed that fission neutrons are uncorre-
lated in angle.

The auxiliary conditions on the neutron number distribution for
a single initiating neutron comprise the final time condition:

pnðR; tf ;~r; ~X; tf Þ ¼ dn;1 IRð~r; ~XÞ þ dn;0 ½1� IRð~r; ~XÞ�; ð4Þ

where IRð~r; ~XÞ is the indicator function defined to be unity for

ð~r; ~XÞ 2 R and zero otherwise, and the boundary condition:

pnðR; tf ;~r; ~X; tÞ ¼ dn;0; ~r 2 @D; ~e � ~X > 0; ð5Þ
where~e is the outward unit normal on the system boundary. Using
the definition of the generating function, the corresponding final

time and boundary conditions on eG are readily determined to be:eGðz;~r; ~X; tf Þ ¼ ð1� zÞIRð~r; ~XÞ; ð6Þ
and:eGðz;~r; ~X; tÞ ¼ 0; ~r 2 @D; ~e � ~X > 0; t < tf : ð7Þ

We note from Eq. (1) that GðR; tf ; z ¼ 0;~r; ~X; tÞ ¼ p0ðR; tf ;~r; ~X; tÞ
represents the extinction probability, that is, the probability of
finding no neutrons in R at a time tf , given that a single neutron
was introduced to the system at an earlier time t, with position~r

and direction vector ~X. It follows that eGðR; tf ; z ¼ 0;~r; ~X; tÞ ¼
1� p0ðR; tf ;~r; ~X; tÞ is the survival probability, that is, the probability
of finding a non-zero number of neutrons in R at a time tf given one
initial neutron. Taken in the limit t ! 1, the survival probability
gives rise to the probability of initiation (POI) or divergence prob-
ability, a quantity which is non-zero for super-critical systems and
of great relevance to the safety of nuclear systems. This will come
to be useful later when we derive higher order number probability
equations, as the survival probability will be an input to each of
these equations and will lead to a significant simplification when
calculating the derivatives and for numerical implementation.

For numerical expediency, we will assume in the rest of this
paper that the physical properties of the medium (cross sections,
multiplicities) are independent of time. Under these conditions,
the solution is invariant to arbitrary translations of the time vari-
able, meaning that it depends only on the time difference
s ¼ tf � t P 0 and not on the initial and final times separately. Fur-
ther assuming isotropic scattering and that the physical properties
are spatially piecewise constant, Eq. (3) for the generating function
can then be expressed in terms of the forward-time variable s as:
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