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a b s t r a c t

A novel collision source method has been developed to solve the Linear Boltzmann Equation (LBE) more
efficiently by adaptation of the angular quadrature order. The angular adaptation method is unique in
that the flux from each scattering source iteration is obtained, with potentially a different quadrature
order used for each. Traditionally, the flux from every iteration is combined, with the same quadrature
applied to the combined flux. Since the scattering process tends to distribute the radiation more evenly
over angles (i.e., make it more isotropic), the quadrature requirements generally decrease with each iter-
ation. This method allows for an optimal use of processing power, by using a high order quadrature for
the first iterations that need it, before shifting to lower order quadratures for the remaining iterations.
This is essentially an extension of the first collision source method, and is referred to as the adaptive col-
lision source (ACS) method. The ACS methodology has been implemented in the 3-D, parallel, multigroup
discrete ordinates code TITAN. This code was tested on a several simple and complex fixed-source prob-
lems. The ACS implementation in TITAN has shown a reduction in computation time by a factor of 1.5–4
on the fixed-source test problems, for the same desired level of accuracy, as compared to the standard
TITAN code.

� 2017 Elsevier Ltd. All rights reserved.

1. Introduction

The discrete ordinates (SN) method is one of the standard meth-
ods to discretize the angular variable in the Linear Boltzmann
Equation (LBE) that governs radiation transport, and is used in
many production radiation transport codes (Sjoden and
Haghighat, 1997; Yi and Haghighat, 2010; Rhoades and Childs,
1987; Wareing et al., 1997). In the discrete ordinates method, the
LBE is solved over a set of angular directions Xi (also called ordi-
nates), with corresponding weights wi (Chandrasekhar, 1950;
Carlson, 1970). This combination of ðXi;wi) is called an angular
quadrature set. A quadrature set allows the angular integrals to
be converted into sums over the angles of the set. Selection of an
appropriate angular quadrature set is one of the difficulties with
the discrete ordinates method (Lathrop, 1971; Lewis and Miller,
1984). Depending on the problem, the flux may vary greatly in
direction (that is, very anisotropic). An anisotropic function would
require many quadrature points in order to properly resolve the
integrals. Using a quadrature order that is too low will result in

large errors from so-called ‘‘ray effects”, while using an order too
high greatly increases computation time (Lathrop, 1968).

There have been several methods developed to optimize the
efficiency of the angular quadrature in discrete ordinates calcula-
tions. The first is simply in the selection of better general quadra-
ture sets that can more accurately integrate the angular flux for the
same total number of directions (Jarrell and Adams, 2011; Ahrens,
2012; Manalo et al., 2015). Another method is local angular refine-
ment (Longoni and Haghighat, 2001, 2002a,b; Longoni, 2004),
which involves adding quadrature points in angular directions of
high anisotropy, while leaving a coarse distribution of points in
the more isotropic directions. This has been implemented in the
static, user defined case in production codes (Sjoden and
Haghighat, 1997; Yi and Haghighat, 2010) and some work has been
done to perform this refinement adaptively (Stone and Adams,
2003; Stone, 2007; Jarrell, 2010; Jarrell and Adams, 2011). There
is also the so-called first-collision source method (Alcouffe, 1985;
Alcouffe et al., 1990), which is more closely related to the subject
of this paper. This involves calculating the un-collided flux using
a high-order transport method and then using this to generate a
first-collision source, which is used to start a low order transport
calculation to solve for the collided flux and thus save on compu-
tation time. This method has been implemented with success into
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several transport codes (Wareing et al., 1997, 1998; Lathrop, 1971;
Lillie, 1998).

The new adaptive collision source (ACS) method described in
this paper builds off the first-collision source method by separating
not just the uncollided flux, but also the once-collided flux, twice-
collided flux, etc. At each transport iteration, only the i’th collided
flux is solved for, and the possibility of using different angular
quadrature orders for each is allowed. An intelligent scheme is also
developed with which to choose, on-the-fly, an appropriate angu-
lar quadrature for each iteration. This can achieve the good speed-
ups of the first-collision source method, but is more robust to a
wide variety of problems for which the first collision source is
not as effective.

This paper is organized as follows: first, some background the-
ory is given. Next the first-collision source method is discussed, fol-
lowed by its extension to the new adaptive collision source (ACS)
method (Walters and Haghighat, 2013a,b, 2014). For the ACS
method, the general theory will be discussed followed by the
implementation of the ACS algorithm into the TITAN transport
code. Finally, the results of the ACS method will be compared to
the standard TITAN source iteration on several test problems.

2. Theory

2.1. The linear Boltzmann equation

The steady-state LBE (Bell and Glasstone, 1970) for a fixed
source problem describes the balance of the angular flux

Wð~r; E;XÞ in a phase space (d3~r dEdX).

X̂ � rWð~r; E;XÞ þ rð~r; EÞWð~r; E;XÞ

¼ Q0ð~r; E;XÞ þ
Z 1

0
dE0
Z
4p

dX0rsð~r; E0 ! E; X̂0 � X̂ÞWð~r; E;XÞ ð1Þ

An important quantity derived from the angular flux is the sca-
lar flux /, defined in Eq. (2).

/ð~r; EÞ ¼
Z
4p

dXWð~r; E;XÞ ð2Þ

2.2. Angular quadrature

For the discrete ordinates method, consider that the LBE holds
over a set of discrete angles (or ordinates). This allows an integral
over angle to be replaced by a weighted sum over the discrete
ordinates:Z
4p

dXf ðXÞ ¼
XM
m

wmf ðXmÞ ð3Þ

where m is the ordinate index, M is the total number of ordinates,
Xm is the angle of the m’th ordinate and wm is the weight of the
m’th ordinate. The set of weights and angles (called a quadrature
set) must be chosen carefully to ensure conservation of various
integral properties such as current and scalar flux moments. In this
work, Legendre-Chebyshev quadrature sets are used (Longoni,
2004; Longoni and Haghighat, 2002b), denoted by SN where N is
called the quadrature order. The total number of ordinates M in
the set in a 3-D geometry given by M ¼ NðN þ 2Þ. For example,
the S20 quadrature set has M ¼ 20ð20þ 2Þ ¼ 440 ordinates, while
S6 has only 48. This can mean a huge difference in computation time
between these sets.

2.3. Source iteration

The LBE can be written in operator form as:

HW ¼ SWþ Q0 ð4Þ
where the streaming-collision operator H is defined as in Eq. (5).

H ¼ X̂ � r þ rð~r; EÞ ð5Þ
The scattering operator S is defined in Eq. (6).

S ¼
Z 1

0
dE0
Z
4p

dXrsð~r; E0 ! E;X0 �XÞ ð6Þ

In the standard source iteration method, an initial flux Wð0Þ

(usually 0) is assumed, then the flux is calculated assuming a con-
stant scattering source SW, then the source is updated and the flux
recalculated.

HWðiÞ ¼ SWði�1Þ þ Q0 ð7Þ
where WðiÞ is the flux after iteration i. This operation, the solving of
Eq. (7), is commonly referred to as a transport sweep. After a suffi-
cient iteration, both sides of the equation will converge to within
some given tolerance.

2.4. First collision source method

In the first-collision source (FCS) method, the flux is split into
the uncollided (Wu) and collided (Wc) fluxes, as in Eq. (8).

W ¼ Wc þWu ð8Þ
If we insert the above Eq. (8) into Eq. (4), we can arrive at a set of
coupled transport equations in Eq. (9) and Eq. (10)

HWu ¼ Q0 ð9Þ

HWc ¼ Qc þ SWc ð10Þ
where the first-collision source Qc is defined in Eq. (11)

Qc ¼ SWu ð11Þ
Eq. (9) requires no iterations on the scattering source, and could

be solved relatively quickly using a high-order method (e.g., high
order SN or ray-tracing). Eq. (10) looks exactly like the standard
LBE, except the independent source Q0 is replaced with the first-
collision source derived from the un-collided flux. This collided
flux can then be solved using a lower quadrature order SN in a stan-
dard source iteration method relatively quickly. Again, the motiva-
tion behind this is that the un-collided flux has a much higher
angular variation than the collided flux, so generally requires a
more robust treatment of the angular variable than does the col-
lided flux.

3. Adaptive collision source (ACS) methodology

The new ACS methodology builds on the first-collision source
method to a type of n’th-collision source method using discrete
ordinates. Instead of splitting the flux up into uncollided flux and
collided flux, we expand the total flux (denoted as Wt;n) into the
fluxes of different collision source order (i.e., 0 to n).

Wt;n ¼ W0 þW1 þW2 þ � � �Wn ð12Þ
We truncate the series at the n’th collision. The uncollided flux

and collided flux can be defined in terms of the i’th collided fluxes
as follows:

Wu ¼ W0 ð13Þ

Wc ¼ W1 þW2 þ � � �Wn ð14Þ
Now we arrive at a similar formulation as the first-collision

source method:
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