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a b s t r a c t

Of the methods available by which to integrate the neutron and delayed neutron precursor balance equa-
tions in time, at present the quasi-static methods are among the most practical and favourable. However,
the correct application of the quasi-static method requires the use of appropriately determined time
steps, for both the reasons of accuracy and efficiency. This work presents a methodology for the adaptive
selection of the time steps employed by the quasi-static method, thereby allowing the quasi-static
approach to be applied in an efficient manner while maintaining a prescribed level of accuracy. The
method is applied to and studied using some numeric test problems.

� 2017 Elsevier Ltd. All rights reserved.

1. Introduction

The solution of the time-dependent neutron and delayed neu-
tron precursor balance equations on the full phase space is among
the most computationally intensive operations in the simulation of
nuclear fission systems. Aside from the typically large number of
unknowns that result from the necessity to describe and, conse-
quently, to discretise the phase space variables, the neutron and
delayed neutron precursor balance equations are stiff in time, a
property that arises from the vastly different time scales of the
physical phenomena represented by the system of integro-
differential balance equations.

Various approaches exist to perform the numerical integration
in time of the neutron and delayed neutron precursor balance
equations. Among these methods is the quasi-static approach,
which has become a favourite of reactor physicists thanks to its
mathematical elegance, its simplicity, and, when properly applied,
its combined accuracy and computational efficiency. The correct
application of the quasi-static method is related to the appropriate
selection of the time steps, which has direct consequences both on
the accuracy of the computed solution and on the efficiency of the
method.

Although appreciable effort has been dedicated to the mathe-
matical formulation of the quasi-static equations and to the study
of the different algorithmic approaches that can be used to inte-
grate them (Henry, 1958; Ott and Madell, 1966; Ott and

Meneley, 1969; Devooght, 1980; Devooght and Mund, 1980;
Mika, 1982; Kao and Henry, 1989), significantly less effort has been
directed to the study of appropriate methodologies for the selec-
tion of the time steps that are involved in the quasi-static
approach. Existing time step selection algorithms used in neutron-
ics codes which employ quasi-static solvers (Meneley et al., 1967;
Shober et al., 1978) tend to be based on heuristic approaches and
experience acquired through application rather than on a well for-
mulated physical-mathematical basis. While such approaches
function and while they benefit from experience, the resulting
algorithms may become cumbersome, requiring the evaluation of
many metrics, which both adds computational burden and poten-
tially imposes criteria which may lead to non-optimal proposals for
the time steps.

Instead, an extensive history exists of the development and the
application of automated step size selection techniques in numer-
ical solvers of ordinary differential equations (Gear, 1971; Hairer
et al., 1987; Hairer and Wanner, 1991). The theory of adaptive time
step selection that is developed in the general mathematical con-
text can be extended to the specific case of the equations of nuclear
reactor dynamics and to the quasi-static method.

This work presents a methodology for the adaptive selection of
the time steps employed in the quasi-static method. First, the
quasi-static equations of nuclear reactor dynamics are presented
and discussed, with particular focus on the role of the time steps.
Next, the fundamental principles of adaptive step size selection
in the numerical solution of initial value problems are reviewed
in order to provide a basis for that which follows. The two topics
are then synthesised into a methodology for the adaptive selection
of the time steps employed in the quasi-static method. Finally, the
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methodology is assessed through the application to some numeri-
cal test problems.

2. Quasi-static method and time scales

The neutron and delayed neutron precursor balance equations
for a stationary medium may be written in operator form as
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in which the terms have their standard significance: / is the angular
neutron flux, vikici=4p is the emissivity of delayed neutrons in pre-
cursor family i of a total of R precursor families, S is the independent
external neutron source emissivity, L is the loss operator and Mp

and Mi represent the prompt and the delayed fission neutron pro-
duction operators, respectively.

The quasi-static method for the solution of the neutron and
delayed neutron precursor balance equations is based on a
separation-projection technique in which the neutron flux is fac-
torised into the product of an amplitude function T and a shape
function w (Henry, 1958), that is

/ðr; E;X; tÞ ¼ TðtÞwðr; E;X; tÞ: ð2Þ
The factorisation, which is rendered unique by imposing an appro-
priate normalisation condition, has the objective of reducing the
time stiffness of the original problem by allowing each of the two
functions to characterise separately the dominant physics on its
respective time scale, with the amplitude being characterised by
the faster and the shape being characterised by the slower. The
introduction of this factorisation into Eq. (1), followed by the pro-
jection onto the adjoint solution of the reference system ultimately
results in the amplitude equations

d
dt
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and the shape equations
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with the effective delayed neutron precursor amplitudes eci, the
neutron generation time K, the effective delayed neutron fractionsebi, the dynamic reactivity q and the effective independent neutron
source strength es that appear in Eq. (3) given by the standard
weighted integral definitions (Bell and Glasstone, 1970).

Despite the various algorithmic approaches that exist to
advance the solution, the principle which is common to all quasi-
static methods is that the integration of the neutron flux in time
is performed on a multi-scale discretisation of the time domain.
The shape equations are solved every shape time step, Dtw, while
the integral kinetics parameters are updated on the reactivity time

steps, Dtq 6 Dtw, and the amplitude equations are solved on the
amplitude time steps, DtT 6 Dtq. The solution of the neutron flux
at any generic time t can be reconstructed through Eq. (2), perhaps
interpolating the amplitude and/or the shape as required. A funda-
mental consideration for the use of the quasi-static method is
related to the selection of the aforementioned time steps, as their
selection has implications both on the accuracy of the solution
and on the efficiency of the method. This is especially true for
the shape time steps and the reactivity time steps, though perhaps
less so for the amplitude time steps.

The shape time step determines the duration for which the tem-
porally continuous shape function is assumed to be accurately rep-
resentable by a set of discrete values and interpolation rules.
Therefore, an appropriate shape time step is one for which the vari-
ation of the shape across the time step is small in magnitude or for
which the solution is insensitive to the variation of the shape. The
temporal evolution of the shape depends on the type of transient
and the sensitivity of the solution to changes of the shape depends
on the physical characteristics of the system. In addition to the pre-
vious consideration that is strictly related to the mathematical
hypotheses of the quasi-static method, the selection of the shape
time step also needs to take into consideration the properties of
the numerical method according to which the flux or the shape
equations are integrated.

The reactivity time step couples the scalar coefficients of the
amplitude equations to the phase-space-dependent operators
and source emissivity of the neutron and delayed neutron precur-
sor balance equations. Consequently, the limitations on the selec-
tion of the reactivity time step are associated to the methods by
which the flux or shape equations and the amplitude equations
are integrated in the implemented quasi-static algorithm. Namely,
it is the method of integration applied to the flux or shape equa-
tions that determines the assumed evolution of the integral kinet-
ics parameters across the shape time step, while it is the method
by which the amplitude equations are integrated that may impose
practical limitations on the functional dependence of the integral
kinetics parameters permitted as input.

The amplitude time step is a purely mathematical construct
that is utilised to integrate the amplitude equations across a spec-
ified reactivity time step. In virtue of their structure as a system of
coupled first-order ordinary differential equations, the amplitude
equations benefit from the existence of many numerical, both gen-
eral mathematical (Gear, 1971) and application-specific (Ganapol,
2013), and analytical (Akcasu et al., 1971; Hetrick, 1971) methods
that allow to determine the amplitude to a high degree of accuracy.
Thus, in the overall framework of the quasi-static method, the
amplitude time steps are not of particular interest, other than
requiring that they satisfy the requirements for the accuracy
imposed on the solution of the amplitude equations.

3. Adaptive step size control in initial value problems

Adaptive step size control for the numerical integration of ini-
tial value problems is based on the estimation and on the control
of the local error (or, alternatively, the local truncation error) intro-
duced by the numerical method. Consider the initial value problem
of Cauchy in the independent variable t, to be solved numerically.
It can be demonstrated that the local error of a numerical method
of order q is (Gear, 1971)

eðt; hÞ ¼ HðtÞhqþ1 þOðhqþ2Þ; ð5Þ
whereH is the norm of the principal error function and h is the step
size. In general, it is not possible to provide an exact expression for
the local error; consequently, an appropriate bound must be
estimated. By assuming that all step sizes used in the integration
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