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The generation of multigroup neutron cross-section libraries is a key issue of the multigroup transport
calculations in reactor physics. The correct choice of the boundaries of the energy groups, in particular,
is decisive for obtaining reliable results. Knowledge of the reactor physics, general and specific of the
studied reactor, along with long and refined analyses are required for finding out a reasonable energy
structure, which is specific for the considered reactor and might be unsuitable for other systems. The
genetic algorithm presented in this work aims to choose the most appropriate energy structure for the
considered system to collapse a fine multigroup library into a few-groups one, usable for transient trans-
port calculations. The user is free to choose the number of energy groups of the final library, which is in
direct relation with the precision required and the time available for the simulation. The methodology is
coupled with SIMMER-III code and applied to 3 reactor systems: ESNII+ ASTRID, ESFR and MSFR. The
results show that the algorithm can find representative energy structures, providing accurate results
on the multiplication factor. The results of each test are analyzed, showing how different compositions,
geometries and neutron spectra guide the algorithm choices, so demonstrating the effectiveness of the
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1. Introduction

The multigroup theory is an important approach to neutron
cross section energy dependence representation in deterministic
codes for neutron transport (or diffusion) equation solution
(Duderstadt and Hamilton, 1976; Stacey, 2001). The energy space
and the neutron cross section (XS) libraries are discretized on sev-
eral intervals, called energy groups, and the generation of such
libraries with small number of groups is a crucial step for core cal-
culations. The choice of the energy groups’ boundaries is a key
issue of this process, as all energy dependent quantities, including
the neutron flux and current, are to be described according to the
chosen discretization. Hence from a non-optimal energy structure
(ES) may easily follow an inappropriate representation of the spec-
trum, possibly leading to significant deviation of the simulation
results with respect to the real behavior.

Unfortunately, the methods currently employed to do such an
important choice are neither user-friendly nor precise, as they
are mostly based on expert judgement (Cacuci, 2010). This, of
course, presumes a deep knowledge of the reactor physics of the
considered system and a highly specific competence in the
XS-related nuclear science, which might not be the case for many
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code users. This difficulty in the generation process promotes the
creation (and the use) of “general-purpose” few-groups XS
libraries, which energy structure, however, might be unsuitable
to particular reactor design. In fact, as the neutron spectrum plays
a major role in the energy discretization and homogenization pro-
cedure, XS libraries should be considered specific to the reactor
they have been designed for, and should not be applied to systems
too distant from the proper one. In fact, a XS library can adequately
model a reactor transient, even with a limited number of groups, if
it has been correctly designed for the considered system.

The solution to these issues would be an automatization of the
energy boundaries selection which, combined with a XS-collapsing
procedure, would make possible the creation of highly-specific XS
libraries for each reactor starting from a unique and general fine-
group library. Due to the high non-linearities involved, this auto-
matic choice cannot be achieved through a deterministic proce-
dure, but an evolutionary algorithm can overcome the problem
and attain the goal.

Among the family of evolutionary algorithms, based on Dar-
winian selection and evolution principles, a genetic algorithm
(GA) has been chosen for the present study. In GAs possible solu-
tions are considered as individuals of a population, each character-
ized by a genotype and a phenotype; as time passes, the features,
or genes, of successful solutions are perpetuated and, appropriately
mixed, better individuals are found. The GA concept dates from the


http://crossmark.crossref.org/dialog/?doi=10.1016/j.anucene.2017.03.022&domain=pdf
http://dx.doi.org/10.1016/j.anucene.2017.03.022
mailto:mattia.massone@kit.edu
http://dx.doi.org/10.1016/j.anucene.2017.03.022
http://www.sciencedirect.com/science/journal/03064549
http://www.elsevier.com/locate/anucene

370 M. Massone et al./Annals of Nuclear Energy 105 (2017) 369-387

1960s, when it has been proposed by Holland (1962) and is widely
used in a number of fields.

Similar approaches to the multigroup energy mesh search,
based on metaheuristic optimization, have been proposed by
Mosca and Mounier (2008), Mosca et al. (2011a,b) and by Yi and
Sjoden (2013). The studies are based on swarm algorithms rather
than evolutionary ones and are applied to a predefined set of infi-
nite homogeneous medium problems for fast reactors or to a single
pin in a thermal system.

Having this in mind a GA has been developed and proposed in
the paper to perform the energy groups’ boundaries search in
neutron transport problems. The developed GA has then been
joined together with the SIMMER-III code (Yamano et al., 2003;
Kondo et al., 2000), as a complement to the XS collapsing exten-
sion already proposed in 2014 (Massone et al., 2014), and tested
on 3 reactor systems: the Advanced Sodium Technological Reactor
for Industrial Demonstration (ASTRID) developed in the frame-
work of the European Sustainable Nuclear Industrial Initiative
(ESNII+) (SNETP, 2014), the Working Horse (WH) core (Fiorini,
2009) of the European Sodium Fast Reactor (ESFR) (Andriolo,
2015), and the Molten Salt Fast Reactor (MSFR) considered for
the Evaluation and Viability of Liquid Fuel Fast Reactor System
(EVOL) project (EVOL, 2011). The obtained results are then anal-
ysed and compared to demonstrate the effectiveness of the
approach and to study the physical implications underlying the
GA choices.

2. Method description
2.1. First approach

The first attempt to produce an automated procedure for energy
structure choice has been the transposition into an algorithm of
the study on the flux spectrum, which is the basis of the current
methods used for energy structure determination. Hence, adjacent
energy groups characterized by similar values of the neutron pop-
ulation should be collapsed together, while avoiding averaging
together peaks and valleys in the spectrum profile. Essentially, this
represents a greedy approach (Cormen et al., 2000), i.e. at each step
the best option available at the moment is chosen. The main step is
the collapsing of the two close energy groups with the lowest dif-
ference in neutron population, repeated until the desired number
of groups is achieved.

Due to the poor results obtained in this way, different options
for the collapsing criterion (while keeping the greedy approach)
have been explored:

e Least difference in neutron flux;
e Least difference in reaction rate;

o Least difference in 22

In all cases the results were far from being acceptable. More-
over, the solutions with the best match in the keg looked very
counterintuitive, when contrasting them with the flux spectrum.

A Dbetter approach, also based on the greedy algorithm but
focused on the final result (keg) rather than on the spectrum, has
then been envisioned:

I. The ke of the uncollapsed solution is calculated and taken as
objective;
I. The ke related to each possible solution with N — 1 energy
groups is calculated;
IIl. The best option is picked;
IV. Procedure continues with Step II, considering all now possi-
ble solutions (N — 2);

This algorithm, however, would have required a large number
of calculations performed with a large number of groups (very
computationally expensive), associated with a high probability of
obtaining a sub-optimal result (greedy algorithms do not explore
adequately the solution space) or even the worst option (Bang-
Jensen et al., 2004).

The risk of obtaining unacceptable results can be prevented
using an evolutionary algorithm, such as a GA. It would require a
large number of calculations before convergence, like the proposed
greedy algorithm, but these would be characterized by a limited
number of energy groups, i.e. they would be computationally
cheap.

2.2. The genetic algorithm

Genetic algorithms are a particular group of evolutionary algo-
rithms, which working principle is the same of Darwinian selection
and evolution. John Holland introduces first the concept of genetic
algorithm in the 1960s (Holland, 1962) and then develops it and
provides a theoretical basis in the next years (Holland, 1975). Since
then this technique has been widely proven and exploited in a
number of fields, including different sectors of the nuclear
engineering.

The central point of the algorithm is the fitness function, which
correlates each possible solution (denoted as individual using the
analogy of biology, very diffused in the evolutionary methods ter-
minology) with a measure (the fitness indeed) of the suitability in
solving the problem. The fitness of each individual of an initial ran-
domly generated set (population) is evaluated and a new popula-
tion is produced; the next generation originates from the
individuals of the old one, but the ones with better fitness have
more chances of handing their properties (genes) on to their
descendants. In this way the quality of the population progres-
sively improves and the solution space is explored, eventually
reaching the optimum (or a close enough problem solution).

2.3. Chromosome representation

The representation of each individual’s genes set (chromosome)
is a highly problem-specific issue, and it is useful specifying the
constraints of the case before dealing with it:

I. Each energy cut of the final library (FL) ES must correspond
to one of the starting fine-groups library (SL) ES. Hence,
being G the gene pool

#G < N (1)

i.e. G is finite;
II. All solutions must have the same number of energy groups,
fixed in advance.

While constraint I attains to the problem nature (and so cannot
be relaxed), the second one has a practical reason: leaving the user
with the freedom to set the number of groups to use, information
which is directly associated with the precision required from the
calculation and with the amount of time available for the calcula-
tion. Moreover, the natural tendency of the algorithm to a better
fitness would privilege solutions with a larger number of energy
groups over individuals with less ones, so potentially removing
the really most interesting solutions from the population. A possi-
ble answer to this issue is the introduction of a penalty factor
(Goldberg, 1989) in the fitness calculation based on the number
of groups tuned to make fair the competition, but it has been pre-
ferred not to investigate this issue.
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