Annals of Nuclear Energy 103 (2017) 212-226

Contents lists available at ScienceDirect

Annals of Nuclear Energy

journal homepage: www.elsevier.com/locate/anucene

Investigation of CO₂ leak accident in SFR coupled with S-CO₂ Brayton cycle

Department of Nuclear & Quantum Engineering, Korea Advanced Institute of Science and Technology, 291, Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea

ARTICLE INFO

Article history: Received 31 August 2016 Received in revised form 28 December 2016 Accepted 14 January 2017

Keywords: Sodium-cooled Fast Reactor Supercritical CO₂ power cycle Na-CO₂ reaction Supercritical CO₂ critical flow Na₂CO₃ cleaning agent

ABSTRACT

Various research organizations have performed feasibility studies for applying the supercritical CO₂ (S-CO₂) Brayton cycle to the Sodium-cooled Fast Reactor (SFR) system and the studies revealed several technical challenges. The preceding studies are reviewed to identify the current status of overcoming the identified challenges and highlight knowledge gaps. One of the most challenging issues is to comprehend the CO₂ leak mechanism initiated from the pressure boundary failure in a Na-CO₂ heat exchanger. Thus, an isentropic critical flow model expanding from supercritical phase to gas phase was evaluated. To validate the selected critical flow model, an experiment of CO₂ critical flow under supercritical condition was performed and the experimental and numerical results correspond to each other reasonably. Another identified technical issue is removing Na-CO₂ reaction product from the system to improve the system economics and plant availability. In this study, candidates that can form eutectic with Na-CO₂ reaction product was newly identified. As a result, it was found that Li₂CO₃-Na₂CO₃ or Li₂CO₃-Na₂CO₃ eutectic systems can act as a potential cleaning agent to eliminate Na-CO₂ reaction product within the operating temperature range of SFR. The performance was confirmed with simple experiments.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Generation IV (GEN IV) nuclear reactors are being developed around the world to achieve higher degree of sustainability, safety, reliability, economics, and non-proliferation compared to the Generation III nuclear reactors. Among GEN IV reactors, the Sodiumcooled Fast Reactor (SFR) has been most widely and actively developed throughout the world. SFRs typically utilized a steam power system in the past, but because higher level of safety and reliability are required for GEN IV reactors compared to the previous generation of nuclear reactors, a motivation to develop an alternative power conversion system for SFRs exists. The alternative power cycle option is to remove the potential sodium-water reaction (SWR) and its associated risk while maintaining or improving the power plant net efficiency. The sodium-water reaction forms corrosive sodium hydroxide (NaOH) and explosive hydrogen gas (H₂) while generating substantial amount of reaction heat in high chemical reaction rate and this can potentially threaten the system safety and economy substantially.

cycle is being considered as an alternative power conversion system to the steam Rankine cycle of SFR systems (Ahn and Lee, 2014; Cha et al., 2009; Sienicki et al., 2014). The S-CO₂ Brayton cycle can 1) improve thermal efficiency, 2) reduce total plant size with compact turbo-machineries and heat exchangers, 3) relatively simple cycle layout, and 4) eliminate the risk of potential SWR. However, several remaining technical issues should be addressed before applying the S-CO₂ Brayton cycle technology to the SFRs. One issue related to the system safety is the CO₂ reaction with liquid sodium, which has been confirmed in the previous studies (Ishikawa et al., 2005; Latgé et al., 2005). Fortunately, the behavior and the potential risks of Na-CO₂ reaction are not serious as much as SWR (Eoh et al., 2013) and the major reaction product is noncorrosive solid Na₂CO₃ while SWR produces highly reactive hydrogen. The reaction between sodium and CO₂ can occur if the pressure boundary fails at a sodium-to-CO₂ heat exchanger. Since the pressure boundary is an interface enduring a high pressure difference between sodium at 0.1 MPa and CO₂ at 20 MPa, the injection of high-pressure CO₂ into the sodium side has to be carefully investigated in mechanical, thermal, chemical, and structural aspects.

From this motivation, the supercritical CO₂ (S-CO₂) Brayton

However, from the initiation of crack to the consequences of $Na-CO_2$ reaction as well as an expected accident scenario in $Na-CO_2$ heat exchanger have not been fully understood clearly

^{*} Corresponding author.

E-mail addresses: jhy0523@kaist.ac.kr (H.-Y. Jung), minskim@kaist.ac.kr (M.S. Kim), goareum@kaist.ac.kr (A-Reum Ko), jeongiklee@kaist.ac.kr (J.I. Lee).

Nomenclature			
A C _p D G H h M	area [m ²] heat capacity [kJ/(kg-K)] diameter [m] mass flux [kg/(m ² -s)] height [m] enthalpy [kJ/kg] Mach number mass [kg] mass flow rate [kg/s] number of moles pressure [MPa] heat transfer [kJ] gas constant for CO ₂ [0.1889 kJ/(kg-K)] temperature [K] or [°C] time [s]	V Greek sy γ Δ ρ σ	velocity [m/s] or volume $[m^3]$ <i>ymbols</i> specific heat ratio (c_p/c_v) property change or difference density [kg/m ³] uncertainty [mm], [s], [kPa], or [°C]
m n P Q R T t		Subscrip b critical e t	sodium side (past the nozzle) critical value nozzle exit time step

yet. Generally, the thermodynamic and kinetic characteristics of Na-CO₂ reaction were established in detail in the previous studies (Eoh et al., 2011; Ishikawa et al., 2005; Latgé et al., 2005; Miyahara et al., 2011; Simon et al., 2007). However, there are relatively few studies on before and after Na-CO₂ reaction or developing models to practically predict the consequence of an accident scenario. Although various research works have been performed, overall knowledge gap within this field or the uncertainties in the previous studies still exist. Thus, it is necessary to identify the current remaining issues in the CO₂ leak accident.

One of the major remaining issues is reducing uncertainties in predicting CO₂ critical flow under various conditions. The amount of CO₂ leaked during the accident depends on the leak rate, in other words, the speed of CO₂ and pressure and temperature conditions at the release location will determine the following accident consequence. Furthermore, the reaction kinetics and the amount of CO₂ reacting with sodium can vary with the speed of CO₂ as well as its amount. While the CO_2 is leaking from the supercritical CO_2 power conversion system to sodium side at atmospheric pressure, CO₂ experiences phase change. The phase change includes supercritical state to gas state and only a few studies for the CO₂ critical flow under these conditions can be found in the open literature. Furthermore, there are limited amount of studies testing the CO₂ flow when both pressures of upstream and downstream are varying together, which can be important data for the future validation of the safety analysis code targeting a sodium cooled fast reactor coupled to the supercritical CO₂ power cycle. Thus, the existing critical flow model is first described and examined if the existing model can be applied to the supercritical CO₂ critical flow prediction under varying conditions. The challenge of the existing critical flow model for gas is that it was not thoroughly tested for the case when the fluid is changing phase from supercritical state to gaseous state. The selected critical flow model was validated with an experiment, which was conducted to simulate the CO₂ critical flow during the leakage of a Na-CO₂ heat exchanger. Furthermore, an experimental study was performed to search cleaning agents to remove Na-CO₂ reaction byproducts. While the CO₂ is being released to the sodium side, the Na-CO₂ reaction product channel plugging can help reducing the accident consequence. However, after the accident phase is terminated, the reactor system has to return back to the original state for continuous operation and cleaning activity will be necessary to remove any Na-CO₂ reaction products attached to the piping, valve, heat exchanger channels and so forth. This is because the reaction product contaminates the surface as well as degrades the component performances. Therefore, if there is a method to clean up the contaminants, it is much more economical by injecting the cleaning agent and filtering it out after the leak incident takes place, and it can improve economy of the system overall. Finding a cleaning agent that can form eutectic with the Na-CO₂ reaction product is first suggested and a few candidate materials were chosen and tested in this study. The identified materials were tested with simple experiments and the approach of using eutectic to clean the SFR with S-CO₂ power system was conceptually proven.

2. Review of previous studies

The sequence of events when there is a major leak in the Na-CO₂ heat exchanger can be described as follows: (1) the failure of pressure boundary will cause a high-pressure CO₂ to flow into the sodium side (2) Na-CO₂ reaction follows and the product of $Na-CO_2$ reaction will be dispersed in the system (3) the leak will be detected and the system will shut down for restoration. During the first event the understanding and prediction of critical flow is important since the critical flow will determine how fast CO₂ will be injected to sodium. For the second event, kinetics of reaction, reaction surface area, reaction surface temperature and speed of reaction heat dissipation are important physical phenomena. Furthermore, the solid product generated from Na-CO₂ reaction will flow with the sodium flow and understanding the deposition of the product within the system will be very important. For the last event, the leak detection and cleanup of the reaction product in the system are two important points. In the following sections, the major findings in the previous studies are categorized and reviewed. The review works are summarized in Table 1.

2.1. Critical flow

As an initial event of the pressure boundary failure, CO_2 in a critical flow state will flow into the sodium side due to a large pressure difference within a Na- CO_2 heat exchanger. Under a critical flow state, CO_2 is released at the maximum mass flux and the quantity of CO_2 is also at maximum. Mignot et al. (2009) described the results of an experiment to measure the critical mass flux for numerous stagnation thermodynamic conditions, geometry and outlet tube roughness (Mignot et al., 2009). The 1D homogeneous equilibrium model showed relatively good (less than 10% error) prediction of the test data. However, it is not directly relative to the critical flow in the CO_2 leak accident scenario because the tests

Download English Version:

https://daneshyari.com/en/article/5475218

Download Persian Version:

https://daneshyari.com/article/5475218

Daneshyari.com