
A PLC platform-independent structural analysis on FBD programs for
digital reactor protection systemsq

Sejin Jung a, Junbeom Yoo a,⇑, Young-Jun Lee b

aKonkuk University, Republic of Korea
bKorea Atomic Energy Research Institute, Republic of Korea

a r t i c l e i n f o

Article history:
Received 29 March 2016
Received in revised form 3 February 2017
Accepted 5 February 2017

Keywords:
Structural analysis
Function block diagram
PLC
Guidelines

a b s t r a c t

FBD (function block diagram) has been widely used to implement safety-critical software for PLC (pro-
grammable logic controller)-based digital nuclear reactor protection systems. The software should be
developed strictly in accordance with safety programming guidelines such as NUREG/CR-6463.
Software engineering tools of PLC vendors enable us to present structural analyses using FBD programs,
but specific rules pertaining to the guidelines are enclosed within the commercial tools, and specific links
to the guidelines are not clearly communicated. This paper proposes a set of rules on the structure of FBD
programs in accordance with guidelines, and we develop an automatic analysis tool for FBD programs
written in the PLCopen TC6 format. With the proposed tool, any FBD program that is transformed into
an open format can be analyzed the PLC platform-independently. We consider a case study on FBD pro-
grams obtained from a preliminary version of a Korean nuclear power plant, and we demonstrate the
effectiveness and potential of the proposed rules and analysis tool.

� 2017 Elsevier Ltd. All rights reserved.

1. Introduction

PLCs (programmable logic controllers) have been widely used in
the development of embedded controllers of various safety-critical
systems. The software implemented with PLCs is typically pro-
grammed with PLC programming languages such as FBD (function
block diagram), and then software engineering tools of PLC vendors
synthesize the programs into PLC-executable codes mechanically.
All issues related to structural correctness and the safety of the
FBD programs need to be addressed in order to proceed with the
mechanical synthesis. Software engineering tools developed by
PLC vendors can check these issues strictly, but vendor-
dependently and SW tool-internally.

RPS (Reactor Protection System) in nuclear power plants is
implemented using PLCs, and the software used is often pro-
grammed with FBD. Because these systems are safety-critical sys-
tems, a hierarchy of standards, regulations, and guidelines on the
structural quality (i.e., correctness and safety) of software pro-
grams should be satisfied to obtain operational approval of govern-
ment authorities. IEC 61131-3 (IEC, 2013), IEC 61508 (IEC, 1997),
and NUREG/CR-6463 (NRC, 1997) are some examples of such stan-

dards. NUREG/CR-6463 is top-most programming guideline for
software development, and all software engineering tools devel-
oped by PLC vendors apply it in the analysis of FBD programs. In
this paper, we focus on the problem whereby commercial tools
perform the structural analysis well, but the exact correspondence
(or relation) to upper rules and guidelines is neither clear nor
opened.

In this paper, we propose a set of specific rules regarding the
structure of FBD programs in accordance with the guidelines of
higher levels. We can argue direct relations from one rule/guide-
line to upper ones. We also developed an automatic analysis tool
‘‘FBD Checker” for FBD programs in the PLCopen TC6 format
(PLCopen XML schema Ver. 2.0, 2008). Any FBD program that is
written or transformed into the open format can be analyzed the
PLC platform1-independently. In other words, we do not have to
use the software engineering tools of specific PLC vendors. We also
performed case studies of structural analyses on FBD programs that
were sampled from preliminary versions of Korean nuclear power
plants. The results show the effectiveness and potential of the pro-
posed rule sets and analysis tool.

The paper is organized as follows. In Section 2, we discuss back-
ground information such as FBD programming. Section 2 also

http://dx.doi.org/10.1016/j.anucene.2017.02.006
0306-4549/� 2017 Elsevier Ltd. All rights reserved.

q This paper was originally published in Korean Nuclear Society Autumn Meeting
2014 (Jung et al., 2014).
⇑ Corresponding author.

E-mail address: jbyoo@konkuk.ac.kr (J. Yoo).

1 This paper uses the term ‘PLC platform’ to indicate the pair (a PLC software
engineering tool, a target PLC) such as (pSET, POSAFE-Q PLC) and (SIMATIC-Manager,
SIMATIC Controller).

Annals of Nuclear Energy 103 (2017) 454–469

Contents lists available at ScienceDirect

Annals of Nuclear Energy

journal homepage: www.elsevier .com/locate /anucene

http://crossmark.crossref.org/dialog/?doi=10.1016/j.anucene.2017.02.006&domain=pdf
http://dx.doi.org/10.1016/j.anucene.2017.02.006
mailto:jbyoo@konkuk.ac.kr
http://dx.doi.org/10.1016/j.anucene.2017.02.006
http://www.sciencedirect.com/science/journal/03064549
http://www.elsevier.com/locate/anucene


describes a hierarchy of standards, rules, and guidelines for FBD
programming, which are relevant to our discussion, i.e., developing
PLC software in nuclear reactor protection systems. In Section 3,
we explain detailed sets of guidelines that are proposed in this
paper, along with examples, and in Section 4, we introduce the
automatic structure analyzer - FBD Checker. We explain the case
study in Section 5, while in Section 6, we conclude the paper and
give remarks on our future research direction.

2. Background

2.1. FBD programming

FBD is one of the five PLC programming languages defined by
the IEC 61131-3 standard (IEC, 2013), and it is the most widely
used language to implement PLC-based safety-critical systems in
nuclear power plants. FBD is a data-flow-based language that con-
sists of function blocks that connect with each other. FBD program-
ming is the process of connecting blocks to other blocks
sequentially in order to produce appropriate outputs. Fig. 1 is an
example of an FBD program, which is a part of ‘fixed set-point rising
trip.’ As we will explain in Section 5, this FBD program was origi-
nally an NuSCR (nuclear software cost reduction) (Yoo et al., 2005)
formal requirements specification (KAERI, 2003), and the NuDE
(nuclear development environment) framework (Yoo et al., 2014a;
Yoo et al., 2014b; Kim et al., accepted) transformed it into a behav-
iorally equivalent FBD program.

FBD program in Fig. 1 consists of five function blocks, and it has
a set of interconnections according to a predefined sequential exe-
cution order such as (27)–(31), which is labeled in Fig. 1. For exam-
ple, the first function block that is executed is LT_INT(27), while
the last one is AND_BOOL(31). LT_INT is a function block that cal-
culates the logical ‘<’ with two decimal integer inputs, and other
function blocks can be understood in a similar way. The last func-
tion block AND_BOOL produces an output TRIP, which indicates a
shutdown signal for nuclear reactors.

Fig. 2 shows a typical software development process for PLCs,
used to develop safety-grade digital I&Cs. We first wrote the SRS
(Software Requirements Specification) using in natural languages,
and we then manually modeled the design specification using
PLC programming languages such as FBD or LD. As commercial
PLC vendors provide software engineering tools2 to support
mechanical translation from FBD/LD programs into C and executable
codes for PLCs, most manual software programming will finish at the
design phase. Structural analysis on FBD programs is also performed
by PLC software engineering tools.

2.2. FBD Programming guidelines for safety systems in nuclear power
plants

Fig. 3 summarizes FBD programming guidelines for safety sys-
tems in nuclear power plants, which are pertinent to our discus-
sion - ‘structural analysis on FBD programs.’ Below, the IEC 61131
Part 3 (IEC, 2013) defines 5 PLC programming languages, e.g.,
FBD, LD (Ladder Diagram) and ST (Structured Text), while Part 8
(IEC, 1993) provides basic programming guidelines to be followed
with PLC programming languages. They define the FBD program-
ming language and provide guidelines regarding how to program
with FBD for PLC-based systems of general-purpose.

Based on the standards, the technical report of PLCopen TC5
(Safety Software Technical Specification, 2006; Safety Software

Technical Specification, 2008) provides FBD programming guideli-
nes for safety-critical systems. It suggests safe data types, which
contain additional information for the safety status and level, as
well as safe function blocks. PLCopen TC6 (PLCopen XML schema
Ver. 2.0, 2008) also defines an open XML format for FBDs to enable
the exchange of FBD programs with others, and this is because FBD
programs produced by commercial software engineering tools of
PLC vendors are not compatible with others. In this paper, we
use the XML format to perform a structural analysis on FBD pro-
grams, vendor and tools (i.e., the PLC platform-independently).

NUREG/CR-6463 (NRC, 1997; NRC, 1997) provides guidelines on
software programming languages for nuclear power plant safety
systems, as defined by the NRC (Nuclear Regulatory Commission)
(NRC, 2015). It provides the following high-level languages, e.g.,
Ada, C/C++, LD, FBD, Sequential Function Charts (SFC), Pascal, and
PL/M. Further, it consists of 4 high-level categories such as reliabil-
ity, robustness, traceability, and maintainability. The guidelines with
respect to reliability are to improve the dependability and guaran-
tee correctness, while the guidelines with respect tomaintainability
increase the readability and decrease the complexity. The robust-
ness contains exception handling, and so on. The category of relia-
bility also consists of 3 sub-chapters, namely predictability of
memory utilization, control flow, and timing, and others also have
several sub-chapters generically.

PLC vendors have provided safety-level PLCs and their own soft-
ware engineering tools for developing safety-critical systems in
nuclear power plants, as shown in Fig. 3. The commercial tools con-
tain internal structural analysis facilities, which are internally
referred to as the NUREG/CR-6463 guidelines. However, rules on
FBD structures and specific mapping from the rules to the higher
guidelines are not made public. While basic guidelines (SIEMENS
PLC Control Systems, 2015; Invensys, 2006) with respect to how
to programwith function blocks have been publicized, specific rules
in accordance with the higher guidelines have not been publicized.

2.3. Related work

To the best of our knowledge, few studies have focused on
structural analysis using FBD programs. Lee et al. (2014) proposes
5 categories of FBD programming guidelines for safety-critical sys-
tems, such as data type, variable initialization, usage of variable,
execution control, and explicit ordering. However, it does not
clearly correspond to the top-most guideline, NUREG/CR-6463,
whose target applications are safety systems in nuclear power
plants. de Mario (2008) proposes 9 kinds of restrictions that should
be followed to program with the IEC 61131-3 programming lan-
guages for high-integrity applications. Type safety, memory access,
global variables, and conversion are some examples of the pro-
posed restriction categories. As the restrictions are proposed for
all PLC programming languages, e.g., LD and SFC, we need to select
appropriate ones for FBD. The restrictions also need to be refined in
detail to enable their use as rules for rule checking. For example, it
deals with conversion between integers only.

Several researches that focus on static analysis, not rule check-
ing on FBD programs, are as follows: Prahofer et al. (2012) provides
7 issues for static analysis on the IEC 61131-3 languages. Program
complexity, unreachable codes, and performance problems are
some examples. It also includes areas that are related to rule
checking, such as naming convention. Codesys (CODESYS, 2015) is
a programming tool of IEC 61131-3 programming languages that
provides a static analysis on FBD programs. Using a technical data
sheet (CODESYS, 2015), it also provides a list of subjects that
includes useless declaration, detection of unreachable code, and
naming convention. Fig. 4 depicts the above studies and our pro-
posed approach – ‘FBD Checker’ from the perspective of structural
analysis on FBD programs.

2 e.g., ‘TriStation 1131’ of Invensys (Invensys, 2015), ‘SIMATIC-Manager’ of Siemens
(SIEMENS, 2015), ‘pSET’ of PONU-Tech (PONU-Tech, 2015; Cho et al., 2007), and
‘SPACE’ of AREVA (AVERA, 2015).

S. Jung et al. / Annals of Nuclear Energy 103 (2017) 454–469 455



Download English Version:

https://daneshyari.com/en/article/5475241

Download Persian Version:

https://daneshyari.com/article/5475241

Daneshyari.com

https://daneshyari.com/en/article/5475241
https://daneshyari.com/article/5475241
https://daneshyari.com

