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a b s t r a c t

The proper calculation of core periphery discontinuity factors is important for accurate modeling when
using an advanced nodal diffusion simulator. In cores with hexagonal assemblies, such as in the VVER-
1000, most fuel assemblies share two faces with the radial reflector, and some even three faces. For this
reason, use of a two-dimensional (2D) reflector model will more accurately capture the neutron physics
near the core periphery. This article illustrates key points related to the use of 2D discontinuity factors in
the reflector region, first by using an algorithm that applies the methodology proposed by Mittag et al.
(2003) after correcting some minor typographical errors in the original publication, and then by employ-
ing the SCALE transport module NEWT to compute the appropriate quantities. Large and even negative
discontinuity factors are an acceptable fact of this methodology when the diffusion approximation
becomes invalid due to the problem’s localized features and the large flux gradients.

� 2017 Elsevier Ltd. All rights reserved.

1. Introduction

In western-style LWRs with square pitched assemblies, most
peripheral fuel assemblies share one face with the radial reflector
region, and only a few corner assemblies share two boundaries.
For these cores, a one-dimensional transport-based reflector model
can be used to generate homogenized few-group constants for the
core/reflector interface and obtain assembly powers with a nodal
diffusion simulator that are reasonably accurate in most cases
(Tahara et al., 2000; Müller, 1989). In many cores with hexagonal
assemblies the situation is different because only a few hexagonal
reflector nodes share a single face with peripheral fuel nodes. In
fact, most share two faces, and some even share three faces.
Because of this feature of the geometry, a one-dimensional reflec-
tor model is less accurate for cores with hexagonal assemblies. In
general, using a two-dimensional reflector model will have a
greater benefit upon assembly power accuracy near the periphery
for a VVER-1000 core that it would for a western-style LWR core.

Lattice physics codes, such as the NEWT module within the
SCALE code suite (DeHart and Bowman, 2011), can calculate the
homogenized few-group macroscopic cross sections for a selected
region of the model. In addition, a nodal core simulator such as the
NESTLE code requires group discontinuity factors on each node’s
face. SCALE and the NESTLE nodal core simulator have been used

to accurately model a VVER-1000 operational benchmark
(Luciano et al., 2016). Computing the discontinuity factors for the
zero net neutron current case is straightforward. It is more difficult
to compute discontinuity factors with net currents on the node
faces, such as in a reflector region. While NEWT can compute dis-
continuity factors, it does not do so when a non-zero net current is
present on the node faces. To calculate its overall flux solution,
NEWT computes the group fluxes and partial currents along many
grid lines in the geometry. By using the fluxplane feature of the
code, group fluxes and currents for any line coincident with the
grid lines are written to the output file. This feature is useful for
calculating two-group discontinuity factors after the NEWT com-
putation is complete.

2. Two-group discontinuity factors in the radial reflector

A method to compute discontinuity factors for non-multiplying
material in two-dimensional hexagonal reactor geometry has been
presented by Mittag et al. (2003). The method is based on expand-
ing the group fluxes using:
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where N ¼ 3; kn;x ¼ cos hn; kn;y ¼ sin hn; hn ¼ pðn� 1Þ=N. The con-
stants lg are based on the homogenized group cross sections, and

C�
g;n are coefficients to be determined. The method is a two-group
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formulation and would require significant modifications for groups
other than two. A derivation of the method is presented in the ref-
erence, and is not repeated here. Instead the method is presented
here in algorithmic form, where some minor typographic errors
from the original publication have been corrected as illustrated
within the box below:

In the original publication, Eq. (18) was written:
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2.1. Algorithm

1. From the transport solution, obtain the net currents JNetg;s and the

heterogeneous fluxes /Het
g;s along each side of the hexagon. The

net currents are defined to be positive when the current direc-
tion is outward from the hexagon, and negative when the cur-
rent direction is inward. Currents reported by NEWT are
positive in the þx and þy directions. Therefore, the following
equation must be used:

JNetg;s ¼ Jxþg;s cos hs þ Jyþg;s sin hs ð4Þ

where hs defines the outward normal for each side; in this case
hs ¼ 0; p3 ;

2p
3 ;p; 4p3 ; 5p3

� �
for sides = [East, Northeast, Northwest,

West, Southwest, Southeast].
2. The two-group homogenized cross sections are used to define

three parameters:
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where Ra is the group absorption macroscopic cross section, Rs

is the group to group scattering macroscopic cross section, D is
the diffusion coefficient, and RR;1 ¼ Ra;1 þ Rs;1!2 is the fast group
removal macroscopic cross section.

3. Compute the 6� 6 matrices Mg:
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with
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and d is the distance between parallel sides of the regular hexa-
gon (equivalent to the pitch of a regular hexagonal lattice).

4. For the fast and thermal groups, solve the matrix equations:
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for the 1� 6 group coefficient vectors Cg

!

5. Using the coefficient vectors Cg

!
, solve the matrix equations:
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for the fast and thermal homogeneous fluxes /Hom
g

!
, where the

6� 6 matrix:
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