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a b s t r a c t

The topic of this paper is the development of sensitivity and uncertainty analysis capability to the
CASMO-4/CASMO-4E – SIMULATE-3 code sequence in the context of the OECD/NEA benchmark
‘Uncertainty Analysis in Best-Estimate Modelling for Design, Operation and Safety Analysis of LWRs’
(UAM). The developed capability uses a two-step approach. In the first step, Uncertainties in nuclear data
are propagated to two-group cross sections, diffusion coefficients, and assembly discontinuity factors.
This is carried out using deterministic, perturbation-theory-based uncertainty analysis methodology. In
the second step, a global covariance matrix, characterizing the uncertainties of the group constants, is
formed, and the uncertainties are propagated through a full core SIMULATE calculation using a stochastic
approach. This system enables the analysis of nuclear data related uncertainties in assembly-
homogenized group constants, assembly discontinuity factors, and pin powers, as well as full core results
such as multiplication factor and power distribution. The mathematical background of the deterministic
uncertainty analysis methodology is reviewed and the main conclusions related to the implementation
are summarized. Numerical results are presented for the full core Three Mile Island model in exercise
I-3 of the UAM benchmark at hot zero power with all rods out and inserted. The computational efficiency
of the calculations is discussed.

� 2017 Elsevier Ltd. All rights reserved.

1. Introduction

The topic of this paper is the development of sensitivity and
uncertainty analysis capability to the CASMO-4/CASMO-4E –
SIMULATE-3 code sequence (Rhodes and Edenius, 2001; Rhodes
et al., 2004; Studsvik Scandpower, 2003) in the context of the
‘Uncertainty Analysis in Best-Estimate Modelling for Design, Oper-
ation and Safety Analysis of LWRs’ (UAM) benchmark (Ivanov et al.,
2007).

The UAM benchmark was initiated in 2006 to establish the cur-
rent state and needs of sensitivity and uncertainty analysis with
the goal of being able to propagate uncertainty through all stages
of coupled neutronics/thermal-hydraulics calculations with a spe-
cial emphasis on the uncertainty related to nuclear data. The first
phase of the benchmark concentrates on stand-alone neutronics
calculations in group constant generation and in subsequent full
core analyses using the generated constants. At VTT, CASMO-4
and CASMO-4E are the standard tools for assembly-level calcula-
tions, while SIMULATE is often used for core-level analysis. There-

fore it was decided to begin developing uncertainty analysis
capability for this calculation sequence.

Uncertainty analysis methods can be divided into stochastic
and deterministic methods. In stochastic methods, the values of
the uncertain parameters are repeatedly sampled from their uncer-
tainty distributions and the calculation is repeated with each per-
turbed set of parameters to obtain a sample from the uncertainty
distribution of the system responses under consideration. This
approach is simple and universally applicable, but computationally
expensive. In deterministic methods, on the other hand, the sensi-
tivity profiles of the responses with respect to uncertain parame-
ters are computed first, after which the parameter uncertainty is
propagated by the Sandwich rule by combining the sensitivity pro-
files with the covariance matrices of the parameters. These sensi-
tivity profiles can be computed efficiently by solving the
corresponding generalized adjoint systems. This approach is gener-
ally well-suited when the number of responses is small compared
to the number of uncertain parameters. It is also beneficial that this
type of uncertainty analysis yields detailed information on the
sources of uncertainty in the computation.

Reactor core analyses are generally based on a computation
sequence, where the level of detail and physical complexity is
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reduced and the scale of the modelled system is increased at every
step. In lattice physics calculations, the neutron transport eigen-
value problem is solved on the assembly-level in different operat-
ing conditions, and the solutions are used to homogenize and
collapse assembly data for the following nodal calculations. The
power distribution in the reactor core is then solved from the dif-
fusion equation based on these constants obtained from the lattice
calculations. In this work, the adjoint-based approach (perturba-
tion theory) was applied to the sensitivity analysis of the
assembly-level calculations and stochastic sampling to the uncer-
tainty analysis of the core-level calculations. This framework is
sometimes called the two-step method (Yankov et al., 2012).

This paper is organized as follows. Section 2 reviews the theo-
retical background for the two-step method with emphasis on
the adjoint-based sensitivity analysis. The implementation and
the processing of covariance matrices are discussed in Section 3.
Numerical results are presented and analyzed in Section 4.

2. Theoretical background

The purpose of uncertainty analysis is to estimate how the
uncertainty related to the parameters of a mathematical model
propagates to a response dependent on the solution of this model.
Sensitivity analysis studies the changes in the responses due to
perturbations in the parameters.

2.1. Adjoint-based sensitivity analysis

In deterministic uncertainty analysis, the response sensitivities
are computed first, after which uncertainty is propagated in a
deterministic manner by combining the sensitivity profiles of the
responses with the covariance matrices characterizing the uncer-
tainty of the model parameters.

Let us consider the neutron transport eigenvalue problem,
which can be written in operator form as

AU ¼ 1
k
BU; ð1Þ

where U 2 HU is the neutron flux, HU is a Hilbert space and k is the
critical eigenvalue. The uncertain parameters consist of nuclear data
parameters, and they are denoted by the vector r 2 Er. We will only
consider functional responses dependent on the solution of Eq. (1).
Since nuclear data parameters, such as neutron cross sections, are
functions of energy and location, it is necessary to use a functional
derivative to define the response sensitivities. We can define the
sensitivity of the response R to the perturbation
h ¼ ½dU; dr� 2 D ¼ HU � Er at the point ê ¼ ½Û; r̂� 2 D as the Gâteaux
variation:

dRðê;hÞ ¼ lim
t!0

Rðêþ thÞ � RðêÞ
t

: ð2Þ

In practice, however, Eq. (1) and the system responses are dis-
cretized, meaning that the sensitivity profiles to nuclear data are
reduced to vectors containing conventional partial derivatives.

In perturbation theory, the sensitivities of system responses
with respect to all uncertain parameters are computed based on
solving one additional adjoint system for each response. The
adjoint of Eq. (1) is defined as the system satisfying the following
relation: 1

AU� 1
k
BU; W

� �
¼ U; A�W� 1

k
B�W

� �
; ð3Þ

where the brackets h�; �i denote an inner product, i.e. integrals over
energy, space and direction. The solution of the adjoint problem

A� � 1
k
B�

� �
W ¼ 0 ð4Þ

is called the fundamental adjoint. In classical perturbation theory,
the response under consideration is the critical eigenvalue k. By uti-
lizing the fundamental adjoint we can derive the following expres-
sion for the relative sensitivity of kwith respect to a perturbation dr
(for derivation, see e.g. Williams (1986) and Pusa (2012a)):

dkðê;hÞ
k

¼ � ðA0
rðêÞ � 1

kB
0
rðêÞÞdr; W

� �
1
kBU; W
� � : ð5Þ

For functional responses that are Fréchet-differentiable with
the gradient orthogonal to the forward flux, we can define the gen-
eralized adjoint as the solution to the following inhomogeneous
system

A� � 1
k
B�

� �
C ¼ rUR

R
: ð6Þ

If the generalized adjoint problem has a solution, it follows that
an infinite number of solutions exist. Out of these solutions, it is
possible to choose the one orthogonal to the forward fission
source. For further details, see e.g. Pusa (2012b). This particular
solution is denoted by Cp in this paper.

Generalized perturbation theory considers responses of the
form

RðeÞ ¼ hU; R1i
hU; R2i ; ð7Þ

where R1;R2 2 HU. In Eq. (7) it is assumed that R1 and R2 do not
depend on U. It is straight-forward to show that in this case the rel-
ative gradient of the response can be written

rUR
R

¼ R1

hU; R1i �
R2

hU; R2i ð8Þ

and that this gradient is orthogonal to the forward flux U. The fol-
lowing expression can now be derived for the sensitivity of a
response in generalized perturbation theory (For derivation, see
e.g. Williams (1986) and Pusa (2012b)):

dRðê;hÞ
R

¼ R0
rðêÞdr
R

� C; A0
rðêÞ �

1
k
B0
rðêÞ

� �
dr

� �
U

; ð9Þ

where the direct sensitivity term can further be written

R0
rðêÞdr
R

¼
@
@rR1ðr̂Þdr;U
� �

R1;Uh i �
@
@rR2ðr̂Þdr;U
� �

R2;Uh i : ð10Þ

Homogenized two-group cross sections and pin powers can be
written in the form of Eq. (7) and therefore Eqs. (8)–(10) can
directly be applied to them. When diffusion coefficients are consid-
ered as responses, Eq. (8) needs to be modified. The energy and
location dependent diffusion coefficient is generally defined as

Dðr; EÞ ¼ 1
3Rtrðr; EÞ ; ð11Þ

where Rtr is the transport cross section. However, the two-group
homogenized diffusion coefficients should not be computed by
homogenizing and collapsing the energy- and space-dependent dif-
fusion coefficient (Knott and Yamamoto, 2010). Instead, the trans-
port cross section should be homogenized over the assembly.
After this, two-group diffusion coefficients can be computed either
by collapsing the homogenized transport cross section or the

1 In some cases the adjoint relation needs to be written in the form
hAU� 1

kBU; Wi ¼ hU; A�W� 1
kB

�Wi þ PðW; UÞ½ �x2@X , where PðW;UÞ½ �x2@X is a bilinear
form associated with the system. We will only consider cases where it is straight-
forward to force this term to vanish.
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