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a b s t r a c t

We present an original computational method for the identification of prime implicants (PIs) in non-
coherent structure functions of dynamic systems. This is a relevant problem for dynamic reliability anal-
ysis, when dynamic effects render inadequate the traditional methods of minimal cut-set identification.
PIs identification is here transformed into an optimization problem, where we look for the minimum
combination of implicants that guarantees the best coverage of all the minterms. For testing the method,
an artificial case study has been implemented, regarding a system composed by five components that fail
at random times with random magnitudes. The system undergoes a failure if during an accidental sce-
nario a safety-relevant monitored signal raises above an upper threshold or decreases below a lower
threshold. Truth tables of the two system end-states are used to identify all the minterms. Then, the
PIs that best cover all minterms are found by Modified Binary Differential Evolution. Results and perfor-
mances of the proposed method have been compared with those of a traditional analytical approach
known as Quine-McCluskey algorithm and other evolutionary algorithms, such as Genetic Algorithm
and Binary Differential Evolution. The capability of the method is confirmed with respect to a dynamic
Steam Generator of a Nuclear Power Plant.

� 2016 Elsevier Ltd. All rights reserved.

1. Introduction

The reliability analysis of systems with significant hardware/-
software/human interactions is difficult, because the response of
the system under accidental scenarios depends on the time of
occurrence and on the magnitude of the events (Zio and Di Maio,
2009; Aldemir et al., 2010). Further, it turns out that the logic of
these systems can give rise to non-coherent structure functions,
where both failed and working states of the same components
can lead the system to failure (Di Maio et al., 2015); for example,
if in a systemmade up of three components J, K, L it fails with com-
ponents states (J, �L, K), with the negation sign indicating that the
component is failed, whereas it is working when the components
states are (�J, �L, K), then the system is non-coherent. The traditional
Probabilistic Risk Assessment (PRA) modeling tools, e.g. Fault Tree
and Event Tree Analysis, have difficulties in including the specific
timing and magnitude of the events. On the other hand, so-called
dynamic reliability methods can complement the traditional meth-
ods to accounts for the interactions among the physical parameters

of the processes (temperature, pressure, speed, etc.), the human
operators actions and the failures of the components (Aldemir
et al., 2010; Siu, 1994; Devooght, 1997; Marseguerra et al., 1998)
and to identify the system prime implicants (PIs), i.e., the event
product terms that render true the structure function and that can-
not be covered by more reduced implicants (Quine, 1952), even if
the structure functions are non-coherent.1 PIs have been introduced
as dynamic equivalent of Minimal Cut Sets (MCSs) for conveying the
information on the minimum combinations of failures that lead
(non-coherent and/or dynamic) the system to failure and that cannot
be covered any other implicant (Garrett and Apostolakis, 1999).

Traditionally, non-coherent structure functions have been
interpreted as indication of poor system design. However, in Bee-
son (Beeson, 2002) it is shown that PIs identification can help
developing an effective maintenance schedule for non-coherent
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1 For clarity sake, we recall that an implicant is a product of Boolean variables, each
one associated with a system component and representing its failed (1) or safe state
(0), that leads the system to failure: differently from minterms, in implicants not all
the variables have to appear when these (missing) variables cannot affect the system
behavior. Implicants, thus, can cover more minterms that differ in only one (or more)
variable that does not influence the system failure (as well as cut sets and minterms
in traditional PRA).
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systems. For example, suppose that �J; �K; L (components J and K
failed and component L working) is a PI that causes a catastrophic
system failure. This shows that, if components J, K and L have
failed, L should be the last component to be repaired in order to
avoid system failure. Furthermore, PIs identification allows taking
additional counteracting measures to prevent system failure, for
example by forcing failure of component L when component J
and K have already failed (Sharvia, 2008).

Fault tree analysis is undoubtedly an useful and efficient tool for
minimal cut set identification, but not for PIs identification, since it
can only deal with coherent structure functions (Morreale, 1967).
The problem of extending the analysis to non-coherent fault trees
has, then, been tackled in different ways: the simplification of non-
coherent structure functions expressed in canonical forms has
been raised by Quine (Quine, 1952) and solved by McCluskey
(McCluskey, 1956), allowing a preliminary identification of PIs;
the problem has also been tackled by means of graphical methods
such as Karnaugh maps (Karnaugh, 1953). However, the actual
implementation of these methods becomes very time-consuming
when the number of variables involved in the given structure func-
tion increases. The computational efficiency has been improved
resorting to various Partitioned List algorithms (Morreale, 1970)
and fast Binary Decision Diagram (BDD) algorithms Jung et al.,
2004: in Worrell et al. Worrell et al. (1981), a modification of a
minimal cut sets algorithm known as Simple Prime Implicant Set
Algorithm is proposed, although it does not always produce com-
plete PI sets, whereas in Rauzy and Dutuit (Rauzy and Dutuit,
1997) a method is proposed to convert the fault tree of a non-
coherent structure function into a BDD for PIs identification, where
each of the basic events of the tree is represented as a node with
two branches (branch 1 and 0, corresponding to the component
failure and working states respectively). This latter approach has
been adapted in Bjorkman (Bjorkman, 2013) for PI identification
based on Dynamic Flowgraph Methodology (DFM).

The difficulty in developing efficient computational methods for
PIs identification lays in the fact that this can be seen as an NP-hard
problem of covering a set (the minterms) with elements from given
subsets (the PIs) Sen, 1993: each given subset has an associated
cost proportional to its dimension and the objective of the problem
is to choose the smallest group of subsets whose union contains
the whole set with minimal cost, as we shall see in what follows.

In this paper, we develop a new method for identifying all PIs of
a non-coherent structure function resorting to the powerful evolu-
tionary algorithm of Differential Evolution (DE) Storn and Price,
1996. The PIs are found by solving by DE a properly defined opti-
mization problem, for determining the exact (not approximated)
solution of the Set Covering Problem (SCP) Christofides and
Paixão, 1993; Beasley and Chu, 1996: in this way, none of the
prime (minimal) failure scenarios (i.e., the PIs) can be neglected
by the identification method.

The paper is organized as follows. In Section 2, the artificial case
study used to generate the scenarios for the dynamic reliability
analysis is presented. In Section 3, the model of a Steam Generator
(SG) of a Nuclear Power Plant (NPP) is presented Aubry et al., 2012.
In Section 4, PIs identification is formulated as an optimization
problem and tackled by resorting to the DE-based approach. In Sec-
tion 5, the results of the application of the approach to the scenar-
ios of the artificial case and of the SG are presented. Conclusions
and remarks are given in Section 6.

2. The artificial case study

For ease of illustration of the method proposed, we build an
artificial case study by simulating the accidental scenarios for a
system made of 5 components (denoted as A, B, C, D and E), that

can fail at random times with random magnitudes, giving rise to
different scenarios whose evolutions are represented by 4 moni-
tored signals. Multiple component failures can occur during the
system life, set to T = 7 [h]. For the simulation, a Monte Carlo sam-
pling procedure for injecting faults of random magnitudes at ran-
dom times is implemented. In particular, times and magnitudes
of faults are obtained by a stratified sampling with respect to the
possible accident scenarios (Di Maio et al., 2011). The number of
components that fail is sampled from a binomial distribution with
parameters n = 5 (equal to the number of components) and p = 0.8
(so that even rare multiple fault events are included in the set of
accident scenarios). The first failure time is sampled from a uni-
form distribution [0, 1] [h], and the successive failure times are
sampled by a stick-breaking strategy from the conditional distribu-
tions, uniform from the last sampled time up to 7 [h]. This sam-
pling strategy models a wearing system, with average failure rate
increasing in time.The equations deliberately used to simulate
the signal evolutions in time during the accidental scenarios are
(Table 1):

yðtÞ ¼ 2a1a 1þ erf
t � lffiffiffi

2
p

� �� �
þ 10�3x ð1Þ

yðtÞ ¼ a2 cd
t � c

� �
þ 10�3x ð2Þ

yðtÞ ¼ a3bt þ 10�3x ð3Þ

where a, b, c, d, l, x, a1, a2 and a3 are randomly sampled from the
distributions listed in Table 2. Parameters a1, a2 and a3 represent
the magnitudes of the faults of the accidental scenarios. All param-
eters and variables have arbitrary units.

We take signal 1 as the safety-relevant parameter to be moni-
tored against pre-defined safety thresholds: if it exceeds the upper
threshold value of 2.5, the system fails in the ‘‘High” end state; if it
decreases below the lower threshold value of �1.5, the system end
state is ‘‘Low” (Baraldi et al., 2013). In Fig. 1, the evolution of the 4
signals for 10 randomly sampled accidental scenarios are shown.
Signals measurements are plotted in continuous lines; the upper
and lower thresholds are in dotted and dashed lines, respectively.

Fig. 1 shows that under different scenarios, the signals can
increase or decrease. This can occur in reality where, for example,
if a valve of the coolant injection system of a Nuclear Power Plant

Table 1
Equations used to simulate the signals evolutions in time for each failed component.

Failed component Signal 1 Signal 2 Signal 3 Signal 4

A Eq. (1) Eq. (1) Eq. (3) Eq. (1)
B Eq. (1) Eq. (2) Eq. (3) Eq. (1)
C Eq. (2) Eq. (3) Eq. (1) Eq. (1)
D Eq. (2) Eq. (3) Eq. (2) Eq. (1)
E Eq. (3) Eq. (3) Eq. (3) Eq. (1)

Table 2
Parameters distribution.

Parameter Distribution Mean value Standard deviation

a Gaussian 0.4 0.017
b Gaussian 0.4 0.017
c Gaussian 1.3 0.033
d Gaussian 1.3 0.017
a1 Gaussian 1 0.083
a2 Gaussian 1.05 0.033
a3 Gaussian 1 0.033
l Gaussian 2.45 0.083
x Gaussian 0 1
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