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a b s t r a c t

The paper presents the application of Extreme Leaning Machines (ELMs) for inverse reactor kinetic appli-
cations. ELMs were proposed by Huang and co-workers (2004, 2006a,b, 2015), which showed their
enhances capabilities in terms of training speed and generalization with respect to classical Artificial
Neural Networks (ANNs). ELMs are here implemented for reactivity determination as an alternative to
ANNs (e.g. Picca et al. (2008)) and Gaussian Processes (Picca and Furfaro, 2012). After a review of the main
features of ELMs, their application to inverse kinetic problems is proposed. The ELMs performance is
tested on a typical accelerator drive system configuration (Yalina reactor) and the inversion is carried
out on an accurate kinetic model (multi-group transport).

� 2016 Published by Elsevier Ltd.

1. Introduction

The interpretation of experiments in accelerator-driven systems
(ADS, OECD/NEA 2002) has recently offered new challenges for
inverse reactor kinetics techniques. In fact, these subcritical config-
urations are characterized by compact cores with an inner highly-
enriched booster surrounded by the region designed for nuclear
waste transmutation (e.g. Salvatores et al. (1996), Soule et al.
(2004), Kiyavitskaya et al. (2007)). The macroscopic heterogeneity
of the typical ADS configurations introduces some new features in
their dynamic behavior, which often cannot be accurately
described with a standard lumped parameter model, such as the
point kinetics (PK, Henry, 1958). For this reason, the classical
kinetic inversion techniques based on the point kinetics shows
inherent limitations when used to interpret experiments in these
subcritical configurations (e.g. Eriksonn et al. (2005)).

In the last decade, attempts to overcome these limitations were
made by considering different inversion approaches, e.g. based on
Artificial Neural Networks (ANNs, Picca et al., 2008, 2009, 2010) or
Gaussian Processes (GPs, Picca and Furfaro, 2012). The main advan-
tage of these techniques is that they enable the inversion of more
accurate reactor kinetics models, thus reducing the modeling error
associated with the subcriticality estimation. As a drawback, these
inversion approaches introduce an inversion error, which is typi-
cally not affecting other classical analytically-based techniques
(e.g. Sjöstrand (1956)). The potential dependence of the inversion
results on the network architecture represents a key aspect that

needs to be validated before the practical application of the ANNs
(e.g. see discussions in Picca et al. (2008, 2009, 2010)).

One of the great potential of neural-based inversion strategy is
in its greater flexibility, which for instance allows the subcriticality
level interpretation from the system response to multiple tran-
sients or on the interpretation of signals from several local detec-
tors instead of the global thermal power (often not directly
available in experiments). The main reason for a limited applica-
tion of ANNs to more complex inversions (to Author’s knowledge
only in approached in Picca et al. (2010)) is associated with the
computational burden of the backpropagation-based training of
the ANNs for large training sets.

Huang and co-workers (2004, 2006a,b, 2015) developed the
theory for the so-called extreme learning machines (ELMs) which
effectively addresses the two main limitations (i.e., dependence
of results on network architecture and computational effort for
training). ELMs can be interpreted as a single hidden-layer neural
network where the bias and the weights for the neuron in the inner
layer are randomly generated. In Huang et al. (2006a,b), it was rig-
orously demonstrated that, under rather general conditions, ELMs
can approximate any non-linear piecewise functions simply by
training the coefficients in the output layer, i.e. without the need
for iterative tuning typical of the optimization algorithms used in
the backpropagation process. For this reason, the training opera-
tion for the ELMs can be carried out by one-pass least-square algo-
rithm. Additionally, as demonstrated in a series of works (see the
list at http://www.ntu.edu.sg/home/egbhuang/reference.html),
this algorithm offers very interesting generalization performance
with a remarkable independence of the results on the number of
neurons in the inner layer.
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The motivation of the paper is twofold. Firstly, it extends the
ANN-based inversion concept proposed in Picca et al. (2008,
2009, 2010)) implementing the powerful ELMs. Secondly, it consid-
ers a more realistic ADS configuration (Yalina-like reactor) and
interprets its dynamic behavior on an advanced kinetic model such
as the multi-group transport model, not attempted so far in litera-
ture to Author’s knowledge.

The remainder of the paper is organized as follows. Section 2
presents the basic features of the inverse reactor kinetic problem
and briefly reviews some classical inverse methods derived for
PK model. Section 3 described the neural-based inversion approach
for reactor kinetics, presenting both the standard ANNs and ELMs
approaches. Results are provided in Section 4 before drawing some
conclusions in Section 5.

2. Inverse problems in reactor kinetics

The time-dependent linear transport can be written in a multi-
group approximation as follows (Akcasu et al., 1971):
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where the scalar flux is defined as:

Uð~xÞ ¼
I
4p

d~X0ugð~x; ~X0Þ ð2Þ

and standard definitions for the physical properties applies (see for
example the definitions in Akcasu et al. (1971)).

A large class of inversion techniques developed in the past is
based on the point approximation of the reactor kinetics. The PK
is a lumped parameter model derived projecting Eq. (1) onto a
weight function and hence condensing the spatial, energy and
angular physical information in the coefficients of the system of
first-order ODEs, i.e.:
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where qeff , beff ;i and Keff are known as the kinetic parameters.
Among the methods based on PK, there are the area method

(Sjöstrand, 1956), the slope fitting method (Simmons and King,
1958) and statistical methods based on the noise theory
(Williams, 1974; Pázsit and Demazière, 2010). A large number of
other classical methods for the inverse kinetics are available in lit-
erature (e.g. Feynmann et al. (1956), Orndoff (1957), Gozani
(1962)). The choice of PK as the basis for subcriticality determina-
tion is particular convenient due to the simplicity of the point
kinetic model as opposed to the initial integral-differential system
of equations. For this reason, in many cases the inversion can be
carried out analytically, thus avoiding inversion error. On the con-
trary, a major limitation of these inverse techniques is in the model
error associated with the PK approximation. Although it si well
know that the PK approximation is not very significant for large
systems with no large macroscopic heterogeneity (e.g. Akcasu
et al. (1971)), it can become particularly significant when consider-
ing ADSs (e.g., Eriksonn et al. (2005)). As an example, the Yalina
configuration (Minsk, Belarus) comprises an inner highly enriched
booster characterized by a fast neutron spectrum and an outer

region with thermal spectrum (Kiyavitskaya et al., 2007). The
two regions are separated by a layer which selectively absorbs
thermal neutron to avoid a propagation of a transient in the
periphery towards the centre of the system. Fig. 1 presents the lay-
out of Yalina booster and Table 1 reports the material properties.
For this configuration, the assumption of a point behavior of the
system in pulsed transients cannot be easily justified since the
shape variation during the transient is not negligible.

3. Neural-based inversion of the reactor kinetics

In this section, the neural-based inversion strategy for the reac-
tor kinetic equations is reviewed, highlighting how it can overcome
some of the limitations of the classical inverse techniques and
which are the challenges associated with its application. Both
ANN and ELM are considered in the following, highlighting the
main differences.

3.1. Application of classical ANN approach to reactor kinetic inversion

The artificial neural networks are biologically inspired compu-
tational tools which can flexibly learn from a training sets and
offers very powerful generalization properties (Hagan et al.,
1996). The application of ANNs for reactor kinetics inversion was
proposed in (Picca et al., 2008, 2009, 2010) and consists in the
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Fig. 1. Yalina booster core layout, 902EK configuration (Kiyavitskaya et al., 2007).

Table 1
Characterization of the material property of Yalina core, 902EK configuration
(Kiyavitskaya et al., 2007).

Region Mixtures Geometry % vol

Source Lead Homog. block 0.292
(a)
Fast 1 Fuel: metal U 90%

clad: SS 12X18H10T
matrix: lead

Lattice cell 0.787
(b) Pitch = 1.143 cm

Fast 2 Fuel: metal U 36%
clad: SS 12X18H10T
matrix: lead

Lattice cell 6.885
(c) Pitch = 1.6 cm

Valve 1 Fuel: metal U 0.715%
clad: SS 12X18H10T
matrix: lead

Lattice cell 1.274
(d) Pitch = 1.6 cm

Valve 2 Absorber: B4C
clad: SS 12X18H10T
matrix: lead

Lattice cell 1.367
(e) Pitch = 1.6 cm

Thermal Fuel: metal UO2 + Mg 10%
clad: Al alloy
matrix: Polyethylene

Lattice cell 18.350
(f) Pitch = 2.0 cm

Poly Inner void holeclad: Al alloy
matrix: Polyethylene

Lattice cell 14.802
(g) Pitch = 2.0 cm
Reflector Graphite Homog. block 56.243
(h)
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