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a b s t r a c t

Return volatility plays a key role in quantifying risk, optimizing the portfolio and pricing modelling of
financial market. The study focusing on the return volatility of energy market can help greatly under-
stand the energy fluctuating behaviors. In this paper, we introduce a concept of volatility duration into
the analysis of the New York Mercantile Exchange (NYMEX) energy market, where the daily closing
prices of the futures and spot for the crude oil, natural gas, heating oil and propane are adopted. The
volatility duration is defined as the shortest passage time that the future's volatility intensity takes to go
beyond or below the current volatility intensity which is time-varying and considered as the basic in-
tensity reference. Then, two main aspects of the statistical properties analysis for the energy volatility
duration time series are focused on: one is about the empirical probability distributions and their scaling
behaviors are observed; another is about the complexity properties of the energy volatility durations,
which are discussed by the entropy measures of the composite multiscale entropy (CMSE) and the
composite multiscale cross-sample entropy (CMSCE) approaches.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Oil has played a prominent role in shaping the economic and
political developments of modern economies and our everyday life.
Understanding oil return volatility is of significant interest to both
investors and policymakers [1e5], because return volatility con-
tributes to the risk quantification, the portfolio optimization [6e8],
and key input provision of option pricing models that are based on
the estimation of the volatility of the asset [7,9]. Under varying
market conditions, investors in the financial industry are always
faced with the challenge of how to choose a portfolio and make it
more optimal, since large and unpredictable fluctuations are usu-
ally constitute risk for investments. Apart from caring the future's
volatility intensity above or below a predefined large value (usually
referred to extreme volatility), investors usually tend to make de-
cision by taking today's risk (or volatility) as a basic reference and
wonder how long it will take the future's risk to go above or below
the current volatility intensity, to some extent like an investment
horizon. If it is locally falling (compared with the “tomorrow”

volatility), one is interested in the minimum time that it takes for
the future's volatility intensity to exceed the current value, vice

verse. Taking these into consideration, Niu et al. [10] proposed a
concept of daily return volatility duration for financial stock in-
dexes, which is defined as the shortest passage time when the
future volatility intensity is above or below the current volatility
intensity. The probability distribution, memory effects and multi-
fractility properties of the volatility duration series were mean-
while explored. In the present paper, we continue the former work
and introduce the volatility duration concept into the study of the
energy futures and spot for the crude oil, the natural gas, the
heating oil and the propane from the New York Mercantile Ex-
change (NYMEX).

The idea of the volatility duration is somewhat inspired by the
study of the waiting time between two successive events, which
has recently drawn much attention from various perspectives. The
research is performed for example on the intertrade duration be-
tween two consecutive trades [11e13], the duration time that the
price or volatility keeps below or above its initial value [14], the
waiting time that the price return first exceeds a predefined level
[15,16], and the mean exit time which is the mean time when the
random process leaves for the first time a given interval [17], etc…
In particular, many literature have studied the return intervals or
recurrence intervals t between successive “extreme” volatilities
whose values are greater than a threshold q [18e24]. For instance,
Yamasaki et al. [23] investigated the return intervals between
volatility above a certain threshold in the US stock and foreign

* Corresponding author.
E-mail address: niuhongli@ustb.edu.cn (H. Niu).

Contents lists available at ScienceDirect

Energy

journal homepage: www.elsevier .com/locate/energy

http://dx.doi.org/10.1016/j.energy.2017.09.046
0360-5442/© 2017 Elsevier Ltd. All rights reserved.

Energy 140 (2017) 837e849

mailto:niuhongli@ustb.edu.cn
http://crossmark.crossref.org/dialog/?doi=10.1016/j.energy.2017.09.046&domain=pdf
www.sciencedirect.com/science/journal/03605442
http://www.elsevier.com/locate/energy
http://dx.doi.org/10.1016/j.energy.2017.09.046
http://dx.doi.org/10.1016/j.energy.2017.09.046
http://dx.doi.org/10.1016/j.energy.2017.09.046


exchange markets, and found that the distribution function Pq(t)
scales with themean return interval t as PqðtÞ ¼ t�1f ðt∕tÞ, and f (x)
is consistent with a power-law form. They also found the strong
memory effects of the return intervals. Wang et al. [21] studied the
return intervals in intraday data of the US market, and found
similar scaling and the scaling function f (x) can well approximated
by a stretched exponential f ðxÞ � eax

g
. Zhang et al. [24] used an

alternative function f ðxÞ � eaðln xÞg to fit the distribution. Bogachev
and Bunde [18] showed that the probability density functions of the
interoccurrence times (between events above some threshold) for
multifractal data sets from the multiplicative random cascades and
the multifractal randomwalks models are governed by power laws
with exponents that depend explicitly on the considered threshold.
Different in the way of predefining threshold q in the return in-
terval analysis, the threshold in the process of volatility duration is
time-varying, which refers to the current volatility intensity. The
detailed definition can be found in Section 2.

Then we investigate the statistical properties of the volatility
duration series for the energy futures and spot. Over the last few
decades, international financial markets have experienced a
comprehensive fluctuation behaviors study of the financial price
variations such as the fat tails phenomenon, power law of loga-
rithmic returns and volumes, volatility clustering, multifractality of
volatility, complexity, etc. [24e33]. In this work, we firstly perform
a study of the empirical probability distribution and the cumulative
distribution of the volatility durations, which is fundamental but
crucial in understanding a statistical variable. Interestingly, the
scaling behaviors of the distributions for the analyzed energy fu-
tures and spot are observed. The typical behavior for scaling is data
collapse, all curves can be “collapsed” onto a single curve after a
certain scale transformation on the measure [34]. A system obeys a
scaling law if its relation is characterized by the same functional
form and exponent over a certain range of scales (“scale invari-
ance”). We secondly exploit the underlying complexity properties
of the volatility duration time series. Entropy is an useful
complexity measure for dynamic system. A family of entropy
measures, such as Shannon entropy [35], Kolmogorov entropy [36],
approximate entropy (ApEn) [37], sample entropy (SampEn) [38],
ect., have witnessed wide applications in various fields. Taking the
multiple time scales into SampEn estimation, Costa et al. [39,40]
proposed the multiscale entropy (MSE) for complex time series
analysis, which has demonstrated the effectiveness when applied
to analysis of various types of data in the past decades. The appli-
cation fields include the human gait dynamics [40], heart rate
variability [39], vibration of rotary machine [24], financial markets
[32,41], etc.. However, Wu et al. [42] pointed out the estimation
reliability remains questionable when the MSE method is applied
for short-term time series, and proposed a modification algorithm
called composite MSE, which has been verified its effectiveness in
analysis of short-term financial time series [32]. In this paper, we
adopted it to explore the complexity properties of the energy
volatility durations. On the other hand, cross-sample entropy [38]
is an extension of MSE and provides an indication of the degree
of synchronizing between two concurrent time series. Based on
MSE and cross-sample entropy, Yan et al. [43] developed a novel
algorithm, termed multiscale cross entropy (MSCE), to assess the
coupling behaviors between two sequences on multiple scales. In
this paper, we introduce and apply the composite multiscale cross-
sample entropy (CMSCE) method [44], which is a combination of
CMSE and MSCE methods, to measure asynchrony behaviors be-
tween the energy futures' volatility durations and the energy spot's
volatility durations.

On the whole, the main contribution of this work includes the
following aspects: firstly a concept called volatility duration which
was proposed in study of financial stock market is introduced into

the return volatility study of energy markets. Secondly the empir-
ical probability density function and tail distribution of volatility
durations for the energy products are studied. It will show that
their empirical probability distribution can be depicted by a power
law function, and their tail distribution can be described by
stretched exponential function. Lastly, the complexity properties of
energy markets are investigated of returns and volatility durations
by a entropy measure, namely CMSE method, and the relationship
between each energy item's futures and spot, as well as among
different energy products are analyzed by the CMSCE approach
from the complexity asynchrony perspective.

The paper is organized as follow. In Section 2, there is the
definition of the return volatility duration. In Section 3, the adopted
data sets of NYMEX energy futures and spot are illustrated,
including the crude oil, the natural gas, the heating oil and the
propane. Section 4 investigates the probability distribution and
cumulative distribution of the energy volatility durations. In Sec-
tion 5, the empirical results of complexity and synchrony of the
volatility durations are demonstrated, meanwhile the applied
CMSE and CMSCE approaches are introduced. In Section 6, the
paper is closed with conclusions.

2. Concept description of volatility duration

We here for the first time introduce a concept of volatility
duration into the analysis of energy markets. Denote P(t) the daily
price of a energy item at time t. Its normalized volatility time series
is given as follows

vðtÞ ¼ VðtÞh�
V2ðtÞ�� 〈VðtÞ〉2

i1∕2; (1)

where VðtÞ ¼ jlog PðtÞ � log Pðt � 1Þj is the volatility series repre-
sented by the absolute logarithmic returns of the prices. Then a
volatility duration series fDðtÞ; t ¼ 1;2;…; Tg is produced from v(t)
in the following way: At each day t, we consider the normalized
volatility on the next day v(t þ 1). If v(t þ 1) < v(t), we say that the
volatility is locally falling at t, and define the volatility duration
length I(t) at time t as the waiting time t when v(t þ t) at the first
time exceeds v(t), namely,

IðtÞ ¼ maxft : vðt þ iÞ< vðtÞ; for i � tg (2)

Here I(t) represents the first and also the shortest passage time
when the future volatility of stock prices overtakes the current
volatility, see the case of I(t)¼ 12 in Fig.1 for a graphical illustration.
If v(t þ 1) > v(t), we say that the volatility is locally rising at t, and
similarly define the volatility duration length I(t) at time t as the
waiting time t when v(t þ t) is below v(t) at the first time, that is,

IðtÞ ¼ maxft : vðt þ iÞ> vðtÞ; for i � tg (3)

The case of I(t) ¼ 5 in Fig. 1 is one example. For rare case
v(t þ 1) ¼ v(t), we have I(t) ¼ 0. Then the final volatility duration is
taken as the square root of I(t), in order to weaken the extreme
values in volatility duration series,

DðtÞ ¼
�þ

ffiffiffiffiffiffiffiffi
IðtÞ

p
; If vðt þ 1Þ> vðtÞ

�
ffiffiffiffiffiffiffiffi
IðtÞ

p
; If vðt þ 1Þ< vðtÞ ; (4)

where the positive and negative sign at each data point I(t) is used
to represent and also distinguish the case when the future volatility
is relatively rising or falling with respect to the current one.
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