Accepted Manuscript

Application of response surface methodology to determine effects of operational conditions on in-bed combustion fraction in vortexing fluidized-bed combustor using different fuels

Songshan Cao, Feng Duan, Lihui Zhang, ChienSong Chyang, ChihYun Yang

PII:	S0360-5442(17)31435-4
DOI:	10.1016/j.energy.2017.08.057
Reference:	EGY 11426
To appear in:	Energy
Received Date:	02 April 2017
Revised Date:	04 July 2017
Accepted Date:	13 August 2017

Please cite this article as: Songshan Cao, Feng Duan, Lihui Zhang, ChienSong Chyang, ChihYun Yang, Application of response surface methodology to determine effects of operational conditions on in-bed combustion fraction in vortexing fluidized-bed combustor using different fuels, *Energy* (2017), doi: 10.1016/j.energy.2017.08.057

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

1	Application of response surface methodology to determine
2	effects of operational conditions on in-bed combustion fraction
3	in vortexing fluidized-bed combustor using different fuels
4	Songshan Cao ¹ , Feng Duan ¹ , Lihui Zhang ¹ , ChienSong Chyang ² ,*, ChihYun Yang ²
5	1. School of Energy and Environment, Anhui University of Technology, Maanshan 243002
6	Anhui Province, China
7	2. Department of Chemical Engineering, Chung Yuan Christian University, Taoyuan, 32023,
8	Taiwan, R.O.C
9	* Corresponding author. Tel.: +886 3 2654119; Fax: +886 3 4636242.
10	E-mail address: cschyang@cycu.edu.tw, cschyang@gmail.com (C.S. Chyang).
11	Abstract: Distinct secondary gas injection modes of a vortexing fluidized-bed combustor (VFBC)
12	affect combustion fraction distribution, resulting in different combustion and pollutant emissions
13	characteristics. To determine the important operational conditions, correlations that consider most
14	of the VFBC parameters were derived to predict the in-bed combustion fraction in VFBC. The
15	predictions obtained using the regression correlation analysis were in good agreement with the
16	results of present experiments and with previously published results. Response surface methodology
17	(RSM) was used to analyze the sensitivity of different coded factors based on established model. A
18	new correlation equation, with a fewer parameters, based on the sensitivity analysis, was also
19	developed and exhibited a positive predictive accuracy. Results demonstrate that the primary gas
20	ratio, particle size, and fuel type significantly affect the combustion fraction. The in-bed combustion
21	fraction increases with increasing particle size, and decreases with increasing primary gas ratio and
22	the ratio of volatile to fixed carbon.

Download English Version:

https://daneshyari.com/en/article/5475643

Download Persian Version:

https://daneshyari.com/article/5475643

Daneshyari.com