Accepted Manuscript

Modified exergoeconomic modeling and analysis of combined cooling heating and power system integrated with biomass-steam gasification

Jiangjiang Wang, Tianzhi Mao, Jing Wu

PII:	S0360-5442(17)31406-8
DOI:	10.1016/j.energy.2017.08.030
Reference:	EGY 11399
To appear in:	Energy
Received Date:	13 January 2017
Revised Date:	31 March 2017
Accepted Date:	08 August 2017

Please cite this article as: Jiangjiang Wang, Tianzhi Mao, Jing Wu, Modified exergoeconomic modeling and analysis of combined cooling heating and power system integrated with biomass-steam gasification, *Energy* (2017), doi: 10.1016/j.energy.2017.08.030

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

1	Modified exergoeconomic modeling and analysis of combined cooling heating
2	and power system integrated with biomass-steam gasification
3	Jiangjiang Wang*, Tianzhi Mao, Jing Wu
4	School of Energy, Power and Mechanical Engineering, North China Electric Power
5	University, Baoding, Hebei Province, 071003, China
6	* Corresponding author. Jiangjiang Wang, E-mail address: jiangjiang3330@sina.com
7	
8	Abstract
9	Biomass-steam gasification is an efficient unitization technology of biomass to
10	produce gas fuel for a combined cooling, heating and power (CCHP) system. The aim
11	of this paper is to modify the exergoeconomic method and analyze the cost allocations
12	of multi-products from CCHP system. Firstly, two integrated CCHP schemes with
13	biomass-steam gasification are designed. The difference lies in the gasification
14	endothermic process driven by electricity and thermal energy from the product gas,
15	respectively. The thermodynamic models are presented and validated. Then, a
16	modified exergoeconomic method based on energy level is proposed to accord with
17	the principle of high quality and high price. Finally, a case study is presented to
18	analyze the thermodynamic performances of two CCHP schemes and the production
19	cost allocations including electricity, chilled water for cooling (hot water for heating)
20	and domestic hot water in different operation modes. Compared with the previous
21	exergoeconomic method, the unit exergy cost of electricity with higher energy level
22	increases 0.09 Yuan/kWh while the cost of other products with lower energy level
23	decrease. The results show that the modified exergoeconomic method is more
24	reasonable and efficient.

Download English Version:

https://daneshyari.com/en/article/5475644

Download Persian Version:

https://daneshyari.com/article/5475644

Daneshyari.com