Accepted Manuscript

Closed-loop optimization control on fan speed of air-cooled steam condenser units for energy saving and rapid load regulation

Tingting Yang, Wei Wang, Deliang Zeng, Jizhen Liu, Can Cui

PII: S0360-5442(17)31141-6

DOI: 10.1016/j.energy.2017.06.142

Reference: EGY 11150

To appear in: *Energy*

Received Date: 29 November 2016

Revised Date: 10 April 2017

Accepted Date: 25 June 2017

Please cite this article as: Yang T, Wang W, Zeng D, Liu J, Cui C, Closed-loop optimization control on fan speed of air-cooled steam condenser units for energy saving and rapid load regulation, *Energy* (2017), doi: 10.1016/j.energy.2017.06.142.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

¹ Closed-loop Optimization Control on Fan Speed of Air-cooled Steam Condenser

2

3

Units for Energy Saving and Rapid Load Regulation

Tingting Yang, Wei Wang*, Deliang Zeng, Jizhen Liu, Can Cui

State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, School of Control and
 Computer Engineering, North China Electric Power University, Beijing 102206, China

⁶ Abstract:

7 In order to save more energy and quicken the load change speed of air-cooled steam condenser units, the 8 closed-loop optimized control on the fan speed is proposed and its realization is worth making intensive study. In 9 this regard, the study presents the static and dynamic models of air-cooled steam condenser, and the characteristics 10 of turbine power output affected by fan speed. Then, the structure of closed-loop control on fan speed is designed. 11 Furthermore, two optimized methods on condenser pressure based on fan speed control are separately discussed: 12 the optimum condenser pressure is solved by the genetic algorithm to save more energy, and the condenser 13 pressure regulation is combined with traditional boiler-turbine coordinated control to accelerate the load response. 14 Case study in our paper proves that the fan speed optimization can significantly improve the unit load-following 15 capability, and furthermore unit coal consumption has been significantly reduced when the unit operating in a 16 stable load condition.

¹⁷ Keywords:

18 Air-cooled units; Closed-loop control; Fan speed; Condenser pressure; Load change

¹⁹ Nomenclature

Q_r	heat rejection of exhausted steam	$\Delta p_{s,0}$	fan resistance caused by the invariable
			factors
D_c	mass flow of exhaust steam	n	number of operating fans
h_c	exhausted steam enthalpy	$P_{s,0}$	initial condenser pressure
C_{pw}	specific heat capacity of condensed	$P_{s,\infty}$	final condenser pressure
	water		
t_s	condenser saturation temperature	T_1, T_2	time constants
Q_a	heat absorption of cooling air	$\mathcal{Q}(\cdot)$	Laplace transformation
D_a	mass flow of cooling air	γ	turbine power relative deviation
$LMTD_{cd}$	log mean temperature difference at the	k	slope of condenser pressure-turbine
	condenser		power relative deviation curve
t_{a1}	inlet air temperature	P_{s0}	rated condenser pressure
t_{a2}	outlet air temperature	β	turbine steam load ratio
$ ho_a$	air density	N_T	actual turbine power output
V_a	volume flow of cooling air	N_{T0}	rated turbine power
Α	total heat transfer area	ΔN	net power income

* Corresponding author. Tel.: +86 010 61772965; Fax: +86 010 61772849. E-mail address: <u>wwang@ncepu.edu.cn</u>, <u>ncepuww@163.com</u> (Wei Wang) Download English Version:

https://daneshyari.com/en/article/5476408

Download Persian Version:

https://daneshyari.com/article/5476408

Daneshyari.com