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ABSTRACT

This paper deals with the verification of thermal transient evaluation implementations. This subject is
relevant because e.g. the upcoming standard will describe the thermal transient measurement as a
standard method to estimate the junction-to-case thermal resistance [1,2], thus anybody can create
their own implementation of the evaluation method. We have to have a method to verify these
implementations. For this reason we examined the result of the NID (Network Identification by
Deconvolution) method from different aspects. For these examinations we defined a multilayer structure
as a reference structure and we analytically expressed the unit-step response and the cumulative structure
function of this structure. Using the unit-step response as an input data set for the implementation in
question we got an approximation of the structure function. Analysing this and the reference RC network
we could define a practical maximum tolerance for the deviation between the analytical and the calculated

Thermal resistance functions.

Time-domain analysis

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

In this paragraph we summarize the definition of network
representing functions, based on [3]. Owing to size limitations we
do not present here the detailed discussions and proofs concern-
ing these notions and their relations. Nevertheless, if the reader
accepts the equations presented in this chapter, following the
further parts of the paper should not raise difficulties. Should a
deeper insight into the theoretical background be demanded [3,4]
can be examined.

A lumped element one-port can be represented by a finite
number of 7 time-constants and R magnitudes. The port-impe-
dance of a lumped element network has discrete “spectrum lines”
in finite number. An infinite distributed network (e.g. a thermal
system) has no discrete lines, it can be described with the help of
a continuous time-constant spectrum. The physical meaning of
this idea is that in a general response any time-constant can occur in
some amount, some density, so a density spectrum may suitably
represent it. For practical reasons we use logarithmic variable for the
time and the time-constants:

z=Ilogt, {=logt (M

Let us consider a distributed RC one-port, the response of which
contains numerous exponentials having different time-constants
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and magnitudes. The “time-constant density” is defined as
sum of magnitudes between { and {+A(
Al

From this definition directly follows the fact that the step-function
response can be composed from the time-constant density:

()

o= jim,

alt) = /jo RQ)-[1—e /] d¢ 3)

This integral is the generalisation of the step-function response of a
lumped element network. Using the logarithmic time variable in the
integral of Eq. (3)

az) = [ ) RQ)-[1—e* 1 d¢ (C))

a convolution-type integral equation is obtained. Differentiating
both sides with respect to z, we obtain

d

e az) =Rz) @ W(z) )
where

W@y =e¢ (6)

The W(z) weight function can be seen in the Fig. 1.

For the practical calculation of the time-constant density
function, we use the relation between the Z(s) complex impe-
dance function and R({):

RO)= & Imzs =) )

The proof of Eq. (7) can be found in Ref. [3]. Eq. (7) suggests that
only the jow imaginary frequency has to be replaced by the
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Fig. 1. The W(z) weight function in the convolution equation (5).
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Fig. 2. The s(z) line on the complex plane from Eq. (8).

s = —exp(—z) complex frequency and then the imaginary part of
the calculated complex response multiplied by 1/n provides the
time-constant spectrum.

However, the procedure is not as straightforward as it seems
because of the use of Eq. (7). This equation requires a great
amount of caution. As the equation shows the imaginary part of
the Z impedance has to be calculated along the negative real axis
of the complex plane. Along this axis, singularities usually lie: the
poles of the network equation of lumped circuits or some singular
lines in the case of distributed systems. These singularities can
prevent the use of Eq. (7) for the calculation of the time-constant
spectrum.

We can overcome these difficulties by adopting an approx-
imate solution. In order to bypass the “dangerous” area, we have
to avoid following the negative real axis (Fig. 2). A line that is
appropriately close to this axis might be used instead [9], such as

s=—(cos d+j sin 8)e~? 8

Obviously, the  angle has to be very small, not more than 2°-5°.
Even if this angle is small, an error is introduced into the calculation.
It can be proven that the calculated R{z) time-constant spectrum
can be expressed with the exact one by the following convolution
equation:

-0
Re(@) = ”TR(z) ®enz) 9)
where
ex2) = 1 sin de~* (10)

n—01-2-cos deZ+e-22

This function is a narrow pulse of unity area. The error of the
calculation is represented by this function. Diminishing 6 the e{z)
function becomes narrower and narrower. Thus, any accuracy
requirement can be fulfilled by choosing an appropriately small ¢

angle. The half-value width, which is a measure of the resolution, is
given by

Ae:21n<2—cos S+1/(2—cos 5)2—1) ~25 (1)

If, for example, 0 =2°, then the resolution is 0.1 octave, which
means that two poles can be distinguished if the ratio between their
frequencies is greater than 1.072.

2. The process of the comparison

The process of the comparison can be seen in Fig. 3.

First, we have to define a reference structure, where we know
every necessary parameters. For practical reason we defined a
multilayer structure, where there are more than one significant
time-constant components. The model of the reference structure
can be seen in Fig. 4. It is well known [5] that the Z(s) impedance
of a uniform transmission line can be calculated based on the
telegraph equations:

Z; - cosh yL+Z; - sinh yL
Z; - sinh yL+Z; - cosh yL

Zin=2 (12)
where Z; is the termination of the back side, L is the length of the
transmission line, Z;, is the input impedance and

N A (13)
where r and c are the unit length thermal resistance and capaci-
tance of the material. If we have more than one transmission
lines, we can use Eq. (12) on each section, where the input
impedance of one line is the termination impedance of the
previous line. We use Eq. (12) recursively (Table 1).
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Fig. 3. The process of the comparison, the numbers means which equations are
used in the step.
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Fig. 4. The multilayer distributed RC model of the reference structure.
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