Accepted Manuscript

Modeling of passive direct ethanol fuel cells

V.B. Oliveira, J.P. Pereira, A.M.F.R. Pinto

PII: S0360-5442(17)30937-4

DOI: 10.1016/j.energy.2017.05.152

Reference: EGY 10960

To appear in: Energy

Received Date: 06 June 2016

Revised Date: 18 May 2017

Accepted Date: 25 May 2017

Please cite this article as: V.B. Oliveira, J.P. Pereira, A.M.F.R. Pinto, Modeling of passive direct ethanol fuel cells, *Energy* (2017), doi: 10.1016/j.energy.2017.05.152

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

1	Modeling of passive direct ethanol fuel cells
2	
3	V.B. Oliveira ^a *, J.P. Pereira ^b , A.M.F.R. Pinto ^a *
4	
5	^a CEFT, Department of Chemical Engineering, Faculdade de Engenharia da
6	Universidade do Porto, Porto, Portugal
7	^b TU Delft / Department of Biotechnology, BC Delft, The Netherlands
8	
9	*corresponding author: apinto@fe.up.pt and vaniaso@fe.up.pt
10	
11	ABSTRACT
12	Direct ethanol fuel cells (DEFCs) are promising substitute power sources for compact
13	and mobile applications. Passive feed systems are especially desirable because they are
14	less expensive, more compact and simpler than the active systems. Aiming for the
15	introduction of passive DEFCs in the market, this work describes a steady-state and one-
16	dimensional model considering the electrochemical reactions and all the transport
17	phenomena (heat and mass transport) occurring in a passive feed DEFC. This model can
18	be used to estimate the concentration profiles of the different chemical species, as well
19	as, the temperature distribution on the different layers. Moreover, the model can
20	accurately predict the influence of the operating conditions and design parameters on the
21	ethanol and water crossover rate. The model predictions for the polarization curves are
22	successfully compared with recent published data for different ethanol concentrations.
23	The current model is rapidly implemented and can be a useful tool to optimize the
24	performance of a passive DEFC.
25	
26	Keywords: passive direct ethanol fuel cell, modeling, ethanol crossover, water crossover,
27	fuel cell performance
28	
29	1. Introduction
30	In the last decades fuel cells received great attention as a promising substitute power

33 which use a liquid as fuel, such as methanol and ethanol, appear as one of the most

source for compact and mobile applications, mainly due to their simplicity, efficiency,

low level of emissions and quick refueling [1,2]. Among them, the direct fuel cells (DFC)

Download English Version:

https://daneshyari.com/en/article/5476587

Download Persian Version:

https://daneshyari.com/article/5476587

Daneshyari.com