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a b s t r a c t

As a vital part of future low carbon energy systems, storage technologies need to be included in the
overall optimisation of energy systems. However, this comes with a price of increasing complexity and
computational cost. The increase in complexity can be limited by using simplified time series formula-
tions in the optimisation process, e.g. typical days or multiple time grids. This in turn will affect the
computational cost and quality of the optimisation results. The trade-off between these two aspects has
to be quantified in order to appropriately use the simplification method. This paper investigates the
implementation of the multiple time grids approach in the optimisation of a solar district heating system
with short- and long-term thermal energy storage. The multiple time grids can improve the optimisation
computational time by over an order of magnitude. Nevertheless, this is not a general rule since it is
shown that there is a possibility for the computational time to increase with time step size. Furthermore,
the benefits of multiple time grids become more evident in optimisation with a longer time horizon,
reaching almost two order of magnitude improvement in computational time for the case with 6 years
time horizon and 5% MIP gap.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Energy storage has been acknowledged as a vital technology
required to achieve a low carbon energy system [1]. It has a wide
variety covering different form of energy (electrical, thermal, me-
chanical, and chemical), various energy-to-power ratio, and the
potential of multitude value contributions to the energy system. For
instance, storage can increase the utilisation of renewable energy
by overcoming the supply-demand mismatch inherent inwind and
solar energy [2]. Furthermore, if transport and heat are powered by
low carbon electricity, storage can improve demand side manage-
ment and providing ancillary services for energy suppliers [3,4].

These and other benefits of energy storage can be ensured and
increased further by optimising the design and operation of the
overall energy systems. For example, the size and charge/discharge
behaviour of a storage equipment will influence the trade-off be-
tween the capital and operational costs of the overall system. This is
typically included in the optimisation study of an energy system,
for example in the case of building energy systems [5], microgrids

[6], district heating networks [7], and urban energy systems [8].
However, the presence of storage can significantly increase the

optimisation problem complexity due to (i) the coupling of de-
cisions between time steps, i.e. the stored energy at time step twill
influence the operational decisions at t þ 1; (ii) the additional de-
cision variables for every time step, i.e. decision to charge,
discharge or store the energy; and (iii) the time resolution required
to appropriately model the storage behaviour [9].

This increasing complexity of energy systems optimisation can
be contained by various reduction techniques on the two main
modelling aspects of the optimisation: the time series and the
equipment modelling. The former refers to how the time horizon
and time steps are defined in the optimisation process, while the
latter refers to the accuracy of the equipment model. Complexity
reduction by modifying the equipment model is relatively
straightforward to examine since it is known that a more detailed
and accurate model will typically have higher computational cost
than a simplified one. Studies on the trade-off between modelling
accuracy and computational time of specific equipment have been
reported in the literature, e.g. air source heat pump [10], combined
heat and power [11], and hot water tank storage [12]. On the other
hand, reducing the problem complexity by using different time
series modelling formulation has been less well studied, especially
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in problems with integrated storage equipment.
In most optimisation studies that include storage equipment,

the time series modelling simplification is generally performed
using typical period assumption with single time grid, e.g. one
typical day with hourly time step as a representative of a whole
season. Despite its usefulness in systems with one type of storage
technology, this approach is not able to fully capture the behaviour
of systems with different storage temporal characteristics. One
prominent example of such systems is a solar thermal heating
system with short- and long-term thermal energy storage. The
short-term storage operates on a daily or weekly cycle, while the
long-term storage operates on a monthly or even seasonal cycle.
Studies on such systems have been reported in the literature and
mostly use single time grid in simulating and optimising the system
[13e15].

An alternative to the typical period approach is the use of
multiple time grids in the optimisation model. In the multiple time
grids method, every equipment can have its own time grid which
corresponds to its characteristics. The concept of multiple time
grids has been explored in the field of process systems engineering
(e.g. Refs. [16e18]) and electric power system (e.g Refs. [19e21]).
Nevertheless, its implementation on energy systems with different
types of storage is less well studied, particularly for systems with
seasonal storage.

The present work aims to fill this gap by investigating the
implementation of the multiple time grids formulation in the
optimisation of energy systems with multiple storage technologies.
The considered system is a solar district heating installation with
short- and long-term thermal energy storage. Different time grids
formulations were then implemented within the mixed-integer
linear programming (MILP) optimisation. The results between
optimisation runwere compared in terms of their relative error and
computational cost. The trade-off between these two aspects are
central in the contributions of this work to the body of knowledge.

In the following section, a brief overview of time series
modelling in energy systems optimisation, including the multiple
time grids approach, is presented first. Details on the imple-
mentation of themultiple time grids approach on the case study are
then given, along with the discussion on the optimisation results
and comparison between time grids formulations.

2. Time series modelling

The representation of time in an operational optimisation
problem has been widely investigated over the past decades,
particularly in the field of process systems engineering where
various continuous- and discrete-time representations have been
proposed and implemented [16]. In energy systems optimisation,
discrete-time representation is typically used over continuous-time
because of the nature of the energy demand profile.

As briefly mentioned in the previous section, the most common
way to reduce the problem size in energy systems optimisation is
by using the typical periods approach. The main assumption of this
approach is that a certain time horizon, typically a year, can be
represented by a set of periods, e.g. days, weeks or months. An
example is using one typical day for each season in a year, thus
reducing the number of hourly time steps from 8760 to 96 h.

Apart from empirical selection of typical periods, different
methods to systematically determine typical periods have been
proposed in the literature. Mavrotas et al. investigated the effect of
data compression on the model accuracy [22]. They reduced the
demand data by performing systematic grouping of months to
seasons and hours to intraday periods. Ortiga et al. proposed a
graphical method to select typical days representation from hourly
energy demand data [23]. The issue of subjectivity inherent in a
graphical method has been minimised by the proposed systematic
approach of Dominguez-Munoz et al. [24]. In this method, typical
days are selected by applying a k-medoid clustering algorithm to
the whole year demand data. Fazlollahi et al. developed a system-
atic approach which selects typical days by using the k-means
partitioning clustering algorithm and optimising the results by
means of ε-constraints technique [25]. They also reported the ac-
curacy of the optimisation results using typical days relative to the
one using full time steps. It should be noted that storage equipment
were not included in the aforementioned studies on typical days
determination methods.

In the second part of their study, Fazlollahi et al. implemented
the systematic typical days selection method on a case study with
daily thermal energy storage [26]. The inclusion of daily storage
was also considered by Soderman and Patterson in their optimi-
sation with two typical periods for each season [27]. As in other

Nomenclature

A area, m2

BOI boiler
C cost, $/kWh
DLSC Drake Landing Solar Community
G global horizontal irradiance, kJ/m2

HD heating demand
HX heat exchanger
LTS long-term storage
MU multiple uniform
MNU multiple non-uniform
P electrical power, kW
Q thermal energy, kWh
_Q thermal power, kW
SU single uniform
SNU single non-uniform
SCO solar collector
SOC state-of-charge
STS short-term storage

T temperature, K
V volume, m3

c heat capacity, kJ/kgK
ch charge
dch discharge
el electricity
gas natural gas
n index of time point set
opr operational
s soil
sto store
t time step
w water
ε time point
h efficiency, -
d time step size, h
rw density, kg/m3

f standing losses, %
j state of LTS
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