

Contents lists available at ScienceDirect

Energy

journal homepage: www.elsevier.com/locate/energy

A 3D thermal runaway propagation model for a large format lithium ion battery module

Xuning Feng ^a, Languang Lu ^a, Minggao Ouyang ^{a, *}, Jiangqiu Li ^a, Xiangming He ^b

- ^a State Key Laboratory of Automotive Safety and Energy, Tsinghua University, Beijing 100084, China
- ^b Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China

ARTICLE INFO

Article history: Received 13 October 2015 Received in revised form 26 August 2016 Accepted 27 August 2016

Keywords:
Lithium ion battery
Safety
Thermal runaway
Thermal runaway propagation
Propagation prevention
Thermal model

ABSTRACT

In this paper, a 3D thermal runaway (TR) propagation model is built for a large format lithium ion battery module. The 3D TR propagation model is built based on the energy balance equation. Empirical equations are utilized to simplify the calculation of the chemical kinetics for TR, whereas equivalent thermal resistant layer is employed to simplify the heat transfer through the thin thermal layer. The 3D TR propagation model is validated by experiment and can provide beneficial discussions on the mechanisms of TR propagation. According to the modeling analysis of the 3D model, the TR propagation can be delayed or prevented through: 1) increasing the TR triggering temperature; 2) reducing the total electric energy released during TR; 3) enhancing the heat dissipation level; 4) adding extra thermal resistant layer between adjacent batteries. The TR propagation is successfully prevented in the model and validated by experiment. The model with 3D temperature distribution provides a beneficial tool for researchers to study the TR propagation mechanisms and for engineers to design a safer battery pack.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Fuel shortage and air pollution are among the big concerns of current and future energy [1,2]. New energy vehicles [3,4], especially the electric vehicles [5,6], are developed to face the challenge of the fuel shortage and air pollution. Lithium ion batteries are the promising choices to power the electric vehicles, given their high energy/power density and extended cycle life [7-10]. The safe operation of the new energy vehicle must be guaranteed [11], and the safety of the lithium ion battery must be secured in practical operations [12,13]. The safety issues of lithium ion batteries, especially those associated with thermal runaway (TR), have aroused much attention [14-24]. The thermal management system must guarantee the safe operation of lithium ion battery [25-27], considering extreme working conditions [28]. Modeling analysis is valuable for designing a battery thermal management system [29]. However, although models have been built to analyze the characteristics at normal condition [30], there are still few models that can simulate the behavior of the battery system under extreme conditions.

Large format lithium ion battery is favored by manufacturers because they can provide reduced cell number and pack complexity in the battery pack design [31], associated with an improved reliability of the battery pack [32]. However, the large format lithium ion battery is more vulnerable to safety problems because it contains more stored energy. Additionally, cooling is less effective because of its lower surface/volume ratio, which leads to higher non-uniformity of temperature distribution within the cell [32].

To reduce the possibilities of safety problems, lithium ion batteries have to pass test standards [33–46] before sales. However, accidents occurred one after another [47–53], because the abuse conditions can be tricky and unpredictable in practical conditions [54]. Once the TR is triggered within a single cell, cell-to-cell TR propagation can result in catastrophic hazards [52,53,55]. Therefore the prevention of TR propagation must be considered in battery pack design [56,57].

Experimental study on TR propagation is essential, and we may need massive experiments on TR propagation to help design a safe battery pack. Some current literature provides experimental data related to TR propagation [57–60]. However, given that the experimental study on TR propagation within a battery pack costs much time and money, building an easy-to-use, verified abuse model that realistically captures the mechanisms of TR propagation in battery pack is beneficial to find efficient approaches to prevent

^{*} Corresponding author. E-mail addresses: fxn07@mails.tsinghua.edu.cn (X. Feng), ouymg@tsinghua.edu.cn (M. Ouyang).

Nomenclature $R_{\rm S}^*$			The thermal resistance perpendicular to the adjacent
		5	surface of the battery considering R_{add} , m ² K W ⁻¹
		T	The temperature, K, °C
Abbrevia	itions, description	$\frac{\mathrm{d}T}{\mathrm{d} au}$ T_0	The temperature rise rate, $K s^{-1}$
ARC	Accelerating Rate Calorimetry	T_0	The temperature at the surface of the solid component,
BMS	Battery Management System		K, °C
CATARC	China Automotive Technology and Research Center	T_1,T_2	The temperature at the surface of the component with
	CThe Specification made by the Deutsches Institute für		the index of 1 or 2, K, °C
	Normung	T_{∞}	The ambient temperature, K, °C
DSC	Differential Scanning Calorimetry	$T_{\rm TR,ARC}$	The triggering temperature of thermal runaway, K, °C
PE	Polyethylene	$T_{\rm chem}$	The start temperature of chemical reactions, K, °C
PHEV	Plug-in Hybrid Electric Vehicle	T_{ref}	The reference temperature to normalize the
PP	Polypropylene		temperature T in Kelvin, K
TC	Thermocouple	ΔT	The total temperature rise, K, °C
TR	Thermal Runaway	$\Delta T_{p_i,i+}$	The temperature difference between the negative pole
VDA	Verband Der Automobilindustrie		of Bat i and the positive pole of Bat $i+1$, $i \in \{1,2,3,4,5\}$, K, ${}^{\circ}$ C
Variable	or parameter, description, unit	V	The volume of the component, m ³
Α	The pre-exponential factor, s ⁻¹	V_{bat}	The total volume of the battery cell, m ³
b	The reaction index, 1	$V_{\rm nail}$	The total volume of the nail, m ³
$c_{ m chem}$	The normalized concentration for the chemical		
	reactions, 1	Greek le	etters
$c_{ m ele}$	The normalized concentration of the electric energy, 1	α_{nail}	The proportion of the electric energy released within
$\frac{dc_{chem}}{d\tau} \\ \frac{dc_{ele}}{d\tau}$	The reaction rate of c_{chem} , s^{-1}		the nail, 1
$\frac{dc_{\text{ele}}^{\prime\prime}}{d\tau}$	The reaction rate of c_{ele} , s^{-1}	γ	The proportion factor for $\Delta H_{\rm ele}$ in modeling analysis, 1
$C_{\rm chem}$	The constant for the reaction kinetics of c_{chem} , s ⁻¹	δ	The thickness, m
C_{ele}	The constant for the reaction kinetics of c_{ele} , s ⁻¹	$\delta_{ m add}$	The thickness of the added layer, m
C_p	The specific heat capacity of the component, J kg^{-1} K^{-1}	$\delta_{ m layer}$	The thickness of the equivalent thermal resistant layer,
$c_{x,0}$	The initial normalized concentration of reactant x , 1	,	m
$D_{i,i+1}$	The duration of thermal runaway propagation from	ε	The emissivity constant, 1
	one battery to its neighbor, s	λ	The heat conductivity of all solid components,
ΔE	The total increase of the internal energy, J		${\rm W} {\rm m}^{-1} {\rm K}^{-1}$
ΔĖ	The increase rate of the internal energy of the battery cell, W	λ_0	The heat conductivity of the solid component, $W \ m^{-1} \ K^{-1}$
h	The equivalent thermal contact resistance, or the convection coefficient, W m^{-2} K ⁻¹	$\lambda_{1,}\lambda_{2}$	The heat conductivity of adjacent component with the index of 1 or 2, W m^{-1} K^{-1}
$h_{\rm conv}$	The convective heat dissipation coefficient, $W m^{-2} K^{-1}$	$\lambda_{ m add}$	The heat conductivity of the added layer, W m^{-1} K ⁻¹
$\Delta H_{\rm chem}$	•	λ_{layer}	The heat conductivity of the equivalent thermal
_ richem	thermal runaway process, J		resistant layer, W m^{-1} K^{-1}
Δ H _{ele}	The total electric energy released throughout the	λ_{nail}	The heat conductivity of the nail, W m^{-1} K ⁻¹
	thermal runaway process, J	λ_x , λ_y , λ_z	
ΔH_x	The total heat generated during reaction of reactant <i>x</i> ,		$W m^{-1} K^{-1}$
_x	measured by DSC test, J	ho	The density of the component, kg m ⁻³
$L_{\rm nail}$	The length of the nail, m	σ	The Stefan-Boltzmann constant, $W m^{-2} K^{-4}$
M	The total mass of the battery, kg	au	Time, s
Δm_{χ}	The mass of the reactant <i>x</i> within the battery cell, kg	$ au_{\mathrm{TR},i}$	The triggering time of thermal runaway for Bat i , $i \in$
Q	The self-heat generation rate within the battery cell, W		{1,2,3,4,5,6}, s
Q _{chem}	The heat release rate by the chemical reaction, W	$\dot{\Phi}_{ht}$	The heat transfer intensity, W
Q _{ele}	The heat release rate by the electric short circuit, W	ш	3 ,
$q_{\rm v}$	The volumetric heat generation rate, W m ⁻³	Subscrip	ot, description
$q_{\rm chem}$	The volumetric chemical energy release rate caused by	i	Denotes that the variable is for the Bat i, $i \in \{1,2,3,4,5,6\}$
, ciiciii	side reactions at high temperature, W m ⁻³	X	Denotes that the variable is for reactant x, as listed in
$q_{ m ele}$	The volumetric electric energy release rate after separator collapse and short circuit occurs, W m ⁻³		Table 2
$q_{ m nail}$	The volumetric heat release rate due to short circuit at	Sunersc	ript, description
Tiidii	the nail, W m^{-3}	sim	The parameter with this superscript is adjustable in
$R_{ m add}$	The thermal resistance of the added thermal resistant layer, m^2KW^{-1}		simulation
R _s	The thermal resistance perpendicular to the adjacent surface of the battery, m^2KW^{-1}		

Download English Version:

https://daneshyari.com/en/article/5476666

Download Persian Version:

https://daneshyari.com/article/5476666

Daneshyari.com