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a b s t r a c t

Accurate estimation of battery pack state-of-charge plays a very important role for electric vehicles,
which directly reflects the behavior of battery pack usage. However, the inconsistency of battery makes
the estimation of battery pack state-of-charge different from single cell. In this paper, to estimate the
battery pack state-of-charge on-line, the definition of battery pack is proposed, and the relationship
between the total available capacity of battery pack and single cell is put forward to analyze the energy
efficiency influenced by battery inconsistency, then a lumped parameter battery model is built up to
describe the dynamic behavior of battery pack. Furthermore, the extend Kalman filter-unscented Kalman
filter algorithm is developed to identify the parameters of battery pack and forecast state-of-charge
concurrently. The extend Kalman filter is applied to update the battery pack parameters by real-time
measured data, while the unscented Kalman filter is employed to estimate the battery pack state-of-
charge. Finally, the proposed approach is verified by experiments operated on the lithium-ion battery
under constant current condition and the dynamic stress test profiles. Experimental results indicate that
the proposed method can estimate the battery pack state-of-charge with high accuracy.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

With the increase of environment pollution and energy crises,
many people are paying great attention to the high efficiency en-
ergy usage. The lithium-ion battery has been widely used in dis-
tribution energy storage system and electric vehicles [1] because of
its high energy density, long cycle life, low self-discharge rate and
environmental friendliness. However, single cell has low voltage
platform, low capacity and energy storage which may not meet the
requirements, so hundreds and thousands of cells are always
composed through series or parallel to make up a battery system.
The SOC as an important parameter for battery operation, which is
related to the battery behavior in practice especially for electric
vehicles, needs to be precisely predicted. Unfortunately, the
inconsistent cells in the process of production and usage make it
difficult to directly estimate battery pack SOC with conventional
approaches.

Accurate estimations of cell SOC for series-connected battery
pack are remaining challenge due to the inhabited inconsistency

characteristic. Dr. Xiong in Ref. [2] proposed a screening process
and bias correction based method to solve this problem. This
approach showed excellent performance and high accuracy
respectively against uncertain diving cycles and battery packs.
Wang et al. [3] developed a method for SOC estimation which used
four typical battery models at different charging/discharging stages
and employed the extended Kalman filter (EKF) to improve the SOC
estimation accuracy. The results showed that accurate estimation
and reasonable program execution time can be obtained by this
method. In order to maximize the capacity/energy utilization of
battery packs used in electric vehicles, Dr. Xiong in Ref. [4] pro-
posed a novel systematic SOC estimation framework for battery
pack. This study employed the uncertainty quantification method
to solve the uncertainty modeling problems innovatively. This
approach showed excellent performance and high accuracy
respectively against uncertain diving cycles and battery packs.
Moreover, Dong et al. [5] introduced an invariant-imbedding-
method that analyzed the influence of open-circuit voltage (OCV)
hysteresis phenomena on estimating SOC and also presented a
method based onwavelet-neural-network-based battery model [6]
to solve the nonlinear problems. Feng et al. [7] used an adaptive
joint extend Kalman filter algorithm to identify the parameters of
the function of the relationship between OCV and SOC under* Corresponding author.
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various temperatures in estimating SOC. In Ref. [8], Tang et al.
proposed a dual-circuit based a proportional-integral to restrain
the influence of drifting current, and the estimation SOC is less than
2.5%. Themethod of particle filter (PF) in Ref. [9] was also employed
for SOC estimation, which was a novel algorithm in solving optimal
estimation problems with high accuracy. The PF was also proposed
for battery states joint estimation in Ref. [10]. In addition, Li et al.
[11] built an equipment circuit and estimated the battery SOC based
on strong tracking sigma point Kalman filter (STSPKF). Xiong et al.
[12] used four different charge-discharge current to analyze the
battery characteristics and proposed the adaptive extended Kalman
filter (AEKF) in SOC estimation, besides the neural network
including Neuro-Fuzzy Inference Systems (ANFIS) [13] which was
also used in optimal estimation problems by analyzing the battery
charge and discharge process, and artificial neural network (ANN)
[14] which was simple and easy to implement in nonlinear
analyzation.

Due to the battery inconsistency, the approaches of SOC esti-
mation for battery pack are different from single cell. Through the
literature analysis and practical research, the solved methods can
be concluded as follows: the first method is based on the consis-
tency of cells as shown in Ref. [15], the similar electrochemical
characteristics were selected through the screening process. And in
Ref. [16], the approach of screening process was proposed to
minimize few problems of voltage balancing. Moreover, Plett et al.
in Ref. [17] regarded the battery pack as a cell, and used the EKF to
estimate the battery pack SOC. Xiong et al. [18] also proposed a
filtering approach for ensuring the performance of capacity/resis-
tance conformity in battery pack. This method regards the battery
pack as a big cell by selecting the cells having similar states in ca-
pacity and other aspects. And then the battery pack SOC can be
estimated like the cell. This kind of method is simple and easy to
complete. Unfortunately, the inconsistency of cells will change
during the battery operation, thus the battery pack cannot be taken
as a cell. The second approach is the OCV reference method [19] in
which the relationship between the OCV and SOC is built based on a
given convention. However, to obtain the OCV, the battery must be
rested for several hours, which makes this method only used in
some special situations. The third method is based on active

equalization and passive equalization. In the case of equalization,
the behavior of battery pack is equal to the worst cell in passive
equalization [20] or equal to the mean of cells in the active equal-
ization [21]. The complex topologies and control algorithms limit
the use of this method. The final method regards battery pack as an
“average cell” which can reflect the characteristics of battery pack,
and the parameters of the “average cell” can be acquired by the
average of cells [22]. In this case, the performance of battery pack
can be replaced by a special cell. This method is simple, but the
process of implement equivalent is very difficult.

In this paper, to estimate the battery pack SOC with a simple
way, the definition of battery pack SOC is first introduced, and then
a lumped parameter battery pack model is proposed based on the
data-driven model using the measured data to update the model
parameters. Secondly, the algorithm of EKF-UKF is employed to
estimate the parameters and SOC concurrently. In the algorithm of
EKF-UKF, the EKF is used to update parameters of battery pack on-
line, while the UKF is used to estimate battery pack SOC using the
parameters updated by EKF. Meanwhile, EKF re-identifies the pa-
rameters using the UKF estimation of SOC. Finally, the proposed
approach is verified by experiment under constant current condi-
tion and dynamic stress test (DST) conditions. In addition, the ef-
ficiency of battery pack influenced by battery inconsistency is
analyzed at the end of this paper.

This paper is organized as follows. In section 2, the definition of
battery pack SOC and the model of battery are proposed. In section
3, the state space equations of battery pack estimator are elicited,
furthermore the algorithm of EKF-UKF and its implement flowchart
are introduced. Section 4 describes the test bench and analyzes the
experimental results. Moreover, the relationship between consis-
tency of cells and battery pack capacity is explained. Section 5 gives
the conclusions.

2. Battery pack model

Nowadays, the researchers have built up a complete estimation
system in predicting single cell SOC including the definition of cell
SOC, the way of modeling, and the approaches of battery states
estimation. In Ref. [23], Deng et al. gave a typical definition of cell
SOC. In Ref. [24], Li et al. proposed a dynamic parameter battery
model to analyze the dynamic battery performance. Firouz et al.
[25] used the best linear approximation in SOC estimation. Before
the battery pack states estimation, the definition of battery pack
SOC and the battery pack model should be first introduced.

2.1. The definition of battery pack SOC

A battery pack is usually comprised by hundreds or thousands of
cell connected by series or parallel. However, even the battery
group is rigorously selected in practice, different cells performance
will lead to the battery inconsistency in the process of production
and usage. When any cell reaches the cut-off voltage, the charging/
discharging process should be stopped to avoid cells over-charging/
over-discharging, thus the pack cannot be fully charged/discharged.
To solve the problem, the capacity of pack can be elicited as the sum
of the minimum of the remaining cell capacity and the minimum
charging capacity [26] formulated as:

CPACK ¼ min
1�i�n

ðSOCiCiÞ þ min
1�j�n

��
1� SOCj

�
Cj
�

(1)

where CPACK denotes the capacity of battery pack, min
1�i�n

ðSOCiCiÞ is
the minimum of remaining cell capacity, min

1�j�n
ðð1� SOCjÞCjÞ is the

minimum charging capacity, n is the number of cells in the battery
pack, i; j are the battery number.

Nomenclature

SOC State-of-charge
OCV Open-circuit voltage
DST Dynamic stress test
EKF-UKF Extend Kalman filter-unscented Kalman filter
MaxAE Maximum absolute error
RMSE Root-mean square error
DC Direct current
MAPE Mean absolute percentage error
PC Personal computer
h Coulomb efficiency
EKF Extend Kalman filter
UKF Unscented Kalman filter
STSPKF Strong tracking sigma point Kalman filter
PF Particle filter
AEKF Adaptive extended Kalman filter
ANFIS Adaptive Neuro-Fuzzy Inference Systems
ANN Artificial neural network
RLS Recursive least square
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