Energy 115 (2016) 289-302

Contents lists available at ScienceDirect

Energy

journal homepage: www.elsevier.com/locate/energy

Power system steady-state analysis with large-scale electric vehicle integration

^a Electric Automation Institute, Northeastern University, Shenyang, 110819, PR China

^b School of Electronics, Electrical Engineering and Computer Science, Queen's University Belfast, Belfast, BT9 5AH, UK

^c School of Electrical and Computer Engineering, RMIT University, GPO Box 2476, Melbourne, Victoria, 3001, Australia

ARTICLE INFO

Article history: Received 22 September 2015 Received in revised form 25 August 2016 Accepted 28 August 2016

Keywords: Capacity forecasting Electric vehicle (EV) Siting and sizing Steady-state analysis

ABSTRACT

It is projected that the electric vehicle will become a dominant method of transportation within future road infrastructure. Moreover, the electric vehicle is expected to form an additional role in power systems in terms of electrical storage and load balancing. This paper considers the latter role of the electric vehicle and its impact on the steady-state stability of power systems, particularly in the context of large-scale electric vehicle integration. The paper establishes a model framework which examines four major issues: electric vehicle capacity forecasting; optimization of an object function; electric vehicle station siting and sizing; and steady-state stability. A numerical study has been included which uses projected United Kingdom 2020 power system data with results which indicate that the electric vehicle capacity forecasting model proposed in this paper is effective to describe electric vehicle charging and discharging profiles. The proposed model is used to establish criteria for electric vehicle station siting and sizing and sizing and to determine steady-state stability using a real model of a small-scale city power system.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

The integration of renewable energy sources (RES) and electric vehicles (EVs) has been promoted significantly due to fossil fuel shortage and environment concerns as well as smart grid. The manufacturing and marketing of EVs has developed significantly in recent decades. It has been estimated that approximately 1.2 million BEVs and 0.35 million PHEVs will be on road in the UK by 2020 [1]. It has also been determined that there will be a total installation of 53.2 GW of RES including planning projects with a total power demand of 51.8 GW in winter-max scenario in the UK by the same year [2]. Similar statistics are apparent in other developed nations. Thus, it can be concluded that conventional generation and extensive integration of RES are required in future power systems to support normal electric demands, such as domestic, commercial and industrial loads, as well as stochastic loads, especially EVs.

Traditional power system analysis includes developing models of components, network calculations, power flow solutions, fault analysis and stability analysis. Analyses operate mainly in the time

* Corresponding author. *E-mail address:* bzhou02@qub.ac.uk (B. Zhou).

http://dx.doi.org/10.1016/j.energy.2016.08.096 0360-5442/© 2016 Elsevier Ltd. All rights reserved. domain and involve steady-state analysis, transient state analysis and dynamic state analysis — where steady-state analysis is the basis of the other two [3]. This paper focuses on future power system with large-scale EV integration and examines pertinent technical issues in steady-state analysis, which are regarded as fundamental to both transient and dynamic state analysis. Such issues include EV capacity forecasting, development of an optimization object function, EV station siting and sizing and steady-state stability.

There have been numerous publications to date which consider EV capacity forecasting. Liu et al. [4] discuss the opportunities and challenges of Vehicle-to-Home (V2H), Vehicle-to-Vehicle (V2V), and Vehicle-to-Grid (V2G) technologies. An EV aggregator model and the optimal EV demand calculation flowchart based on the Genetic Algorithm (GA) are introduced. EVs are assumed to be fully charged or discharged in the examples. Shaaban et al. [5] and Liu et al. [6] use Monte Carlo simulation for normally distributed virtual trips and EV initial state-of-charge (SOC). The trip model [5] is applied in the EV energy consumption model. Rolink and Rehtanz [7] use the homogeneous semi-Markov process to determine the probability of EV resting at a defined location and at a given time: the total EV capacity is calculated based on this probability and the rated charging power and EV numbers. Other methods, such as

BTTR	Beijing-Tianjin-Tangshan Region
BFV	hatter electric vehicle
	distributed generation
DG	
DR	demand-response
EV	electric vehicle
FCV	fuel cell vehicle
GA	genetic algorithm
C2V	grid-to-vehicle
G2V CDD	CD a sum d starling
GBP	GB pound sterning
HEV	hybrid electric vehicle
LV	low-voltage
MV	medium-voltage
NI	Northern Ireland
	probabilistic density function
	probabilistic delisity function
PSO	particle swarm optimization
PHEV	plug-in hybrid electric vehicle
RES	renewable energy source
SOC	state-of-charge
SOP	sequence quadratic programming
UC	unit commitment
UK	United Kingdom
USA	United States of America
V2G	vehicle-to-grid
V2H	vehicle-to-home
V2V	vehicle-to-vehicle
CSS	invostment cost
$C_{L,C}^{33}$	charger cost
$C_{I_i}^{ss}$	investment cost of the <i>i</i> th EV station
$C_{L imax}^{SS}$	maximum investment limit of the <i>i</i> th EV station
$C_{L,1m}^{SS}$	land price
CSS	other equipment cost
CSS	transformer cost
C_{I_T}	
C_{M}^{33}	maintenance cost
$C_{M_{-C}}^{SS}$	charger maintenance cost
C_{M}^{SS}	feeder maintenance cost
C_{M}^{SS}	maintenance cost of the <i>i</i> th EV station
C_{SS}^{M-1}	maximum maintenance cost limit of the <i>i</i> th EV station
C_{M_imax}	other equipment maintenance cost
C _{M_oe}	
C_{M_T}	transformer maintenance cost
C_{Q}^{ss}	operation cost
$C_{0 \text{ char}}^{SS}$	charging cost
C_{0}^{SS} dia	discharging cost
C^{SS}	human service cost
C^{SS}	operation cost of the i th FV station
C_{0_i}	maximum operation sout limit of the <i>i</i> th EV station
CO_imax	
C ₀ power	power consumption cost of electric devices
CT_p	charging cycle of charging-only EVs
d	daily travel distance
d_R	maximum range of EV
$\vec{F} \vec{F}^{SS}$	SOC
E,E	available SOC
E _a	
E_B	capacity of EV battery packs
E _{cj}	discrete SOC before charging starts from each time
	interval
E _{c set}	setting value of start SOC for charging-only EVs
F ₄ ;	discrete SOC before discharging starts from each time
Luj	interval
F	
E_k	SUC at start time
E_l	SOC at a later time <i>l</i> after <i>m</i> intervals charging and <i>n</i>
	intervals discharging
Estart, Een	t start point SOC and end point SOC
f(1).g(1)	decision variables
$h h^{SS}$	PDF of initial SOC after one day travel
11,11 1 (1)	autor of name line at time 1
$I_{line}(l)$	current of each line at time l

K_P	power steady-state stability reserve
KU	voltage steady-state stability reserve
L_{ik}^{SS}	distance between the <i>i</i> th EV station and the <i>k</i> th main
66	parking lot
L_{kmax}^{SS}	range limit of thek th main parking lot
M _{char} , M _a	is cost per unit power in the economic calculation and
	carbon emission reduction amount per unit power in
N	environmental application
N	total EV number
N _a	number of flexible charging EVS
IN _B	number of the time intervals of the charging and
IN _C	discharging process
Ν.	uiscial gillg plocess
N _{char}	number of discrete time intervals
N _d	number of EVs at discharging
N _{nc}	number of FCVs
N ₁₁	number of PHFVs
Ni	total number of transmission lines in the system
Nn	number of charging-only EVs
N ^{SS}	total number of EV stations planned in a specific area
N_{α}, N_{β}, N	N_{α} , N_{ϕ} number of flexible EVs under different scenarios
$P_a(l)$	charging power of flexible EVs at time <i>l</i>
P_{Bd}	battery rated discharging power
P_c	rated charging power
P_{c_total}	total charging power
$P_{c \ total}^{M}$	total charging cost
P _{char}	charging power
P_d	rated discharging power
P_{d_total}	total discharging power
$P_{c_{total}}^{N}$	total discharging cost
P_{dis}	discharging power
$P_{EV}(l)$	EV charging power at time <i>l</i>
$P_{EV}^{W}(l)$	EV charging cost at time <i>l</i>
P _{EV}	EV power demand at EV stations
P _{EV_i}	Ev power defination at the <i>i</i> th Ev station
F_{F_imax}	discrete charging/discharging power for the <i>i</i> th period
$P_{I}(I)$	gross load power at time l
Pmax	maximum power of steady-state stability
Programada	maximum power limit of each node
$P_{\text{node}}(l)$	power of each node at time <i>l</i>
$P_n(l)$	charging power of charging-only EVs at time <i>l</i>
$P_{RES}(l)$	RES generation power at time l
Ps	sending power from the infinite bus
$P_{S}(l)$	object power at time <i>l</i>
\overline{P}_{S}	mean level of the object power
$P_{T imax}^{SS}$	maximum load limit in transformers
R _{line}	resistance of each line
$(R+jX)_{ik}^{SS}$	Simpendence between the <i>i</i> th EV station and the <i>k</i> th
0	main load node
$(R+jX)_{k}^{SX}$	max maximum impendence limit of thek th main load node
T_{1}, T_{2}	setting time for EV charging curve
t_3	discharging end time
T	time interval
T_a	available time duration
T _{amin} , T _{an}	max minimum and maximum value for T_a
U_0	actual operating voltage
U _{cr}	critical voltage of load buses
x_n	sign to identify the existence of EVs
<i>y</i> , <i>z</i>	objective function
α, β, γ, φ	, φ probabilities
μ	log _e mean in SOC PDF
σ	standard deviation in SOC PDF

 η transmission loss percentage

Download English Version:

https://daneshyari.com/en/article/5476673

Download Persian Version:

https://daneshyari.com/article/5476673

Daneshyari.com