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a b s t r a c t

Long term peak electricity demand forecasting is a crucial step in the process of planning for power
transmission and new generation capacity. This paper discusses an application of the Generalized Pareto
Distribution to the modelling of daily peak electricity demand using South African data for the period
2000 to 2010. The main contribution of this paper is in the use of a cubic smoothing spline with a
constant shift factor as a time varying threshold. An intervals estimator method is then used to decluster
the observations above the threshold. We explore the influence of temperature by including it as a co-
variate in the Generalized Pareto Distribution parameters. A comparative analysis is done using the block
maxima approach. The GPD model showed a better fit to the data compared to the GEVD model. Key
findings from this study are that the Weibull class of distributions best fits the data which is bounded
from above for both stationary and non-stationary models. Another key finding is that for different
values of the temperature covariate the shape parameter is invariant and the scale parameter changes for
different values of heating degree days.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Planning for new generating capacity and also for reserve
margins requires accurate long term peak electricity demand
forecasts. Long-term peak electricity demand forecasting has not
received the same attention in literature compared to short-term
peak electricity demand forecasting. However there are a few
notable contributions. A semi-parametric additive model for long
term peak electricity demand is developed in Ref. [21]. The authors
use the model to forecast the probability distribution of peak
electricity demand. In Ref. [23] a regression based model for long-
term peak load forecasting for a small utility in Cyprus is presented.
The developed model incorporates important drivers of electricity
demand. Results from this study show that the developed model
has high predictive power. The use of high resolution electricity
demand data in long term probabilistic forecasting is proposed in
Ref. [33]. Using a case study it is shown from empirical results that
high resolution models outperform low resolution models for both
probabilistic monthly peak and energy load forecasting. A detailed

discussion of some guidelines on methods for probabilistic fore-
casting with applications to electricity price forecasting, energy,
wind and solar forecasting are presented in Ref. [26]. In Ref. [26] a
wide range of tests for assessing reliability which they define to be
“the statistical consistency between the distributional forecasts and
the observations” (some of the tests being the Kupiec, Chris-
toffersen, probability integral transform, Berkowitz tests among
others), andmethods formeasuring sharpness which they define to
be “the concentration of the predictive distributions” (some of
these methods are the proper scoring rules, pinball loss function,
Winkler score, continuous ranked probability score, among others).

One of the major drivers of electricity demand is temperature
and is known to cause seasonal variation in electricity demand [21].
Modelling extreme temperature using extreme value theory (EVT)
is discussed in detail in literature, but the use of EVT in modelling
peak electricity demand has not received much attention. A few
notable contributions in this area include [19] who discuss an
application of EVT in modelling maximum load forecast errors
which they use for given acceptable levels of risk to predict elec-
tricity demand and also [27] who use of the Generalized Pareto
Distribution (GPD) for predicting extreme daily increases in peak
electricity demand. The authors carry out a comparative analysis* Corresponding author.
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with a Generalized Single Pareto Distribution (GSPD). The results
show a good fit for both models. Policy implications are then dis-
cussed. In a related study [9], model the effect of temperature
below a reference temperature which separates the weather
neutral period from the winter sensitive period on average daily
electricity demand using the generalized extreme value distribu-
tion (GEVD). Empirical results from this study show that the
gradual decrease of temperature from 18� C converges to 4:6

�
C

while the marginal increases in average daily electricity demand
converges to 1.58 MW. The authors argue that this modelling
approach assists system operators in scheduling and dispatching of
electrical energy. A stationary GEVD was used in this study.

Modelling of non-stationary sequences using extreme value
theory with time varying parameters and thresholds is discussed
and applied in the field of environmetrics [3]. A point process
approach to modelling non-stationary series with an application to
ozone data is used in Ref. [28]. Empirical results in this study give
values of the shape parameter which are positive and not close to
zero as is the general case for modelling such data. The study did
not incorporate covariates. An application of non-stationary ex-
tremes using temperature is discussed in Ref. [25]. In this study,
block maxima and peaks over threshold (POT) models are used. A
time varying threshold which depends on both the scale and shape
parameters is used in the POT model. The temperature data is
initially centered and normed which enables the retrieval of the
underlying trend. In a similar study [6] critically discuss the rele-
vance of asymptotic theory to applications. They argue that for
near-independent models, the extremal index requires a detailed
investigation. However they agree that for asymptotically depen-
dent data the extremal index beyond time series is well covered in
the literature.

Non-stationary time series models for predicting inflows of
water into Dez dam reservoir are presented in Ref. [32]. A
comparative analysis of the models shows that the dynamic
autoregressive artificial neural network outperforms all the other
models used in the study. The modelling of non-stationary ex-
tremes with an application to surface level ozone is discussed in
Ref. [10]. The authors propose a two stage approach to modelling
the non-stationary data. Initially they use preprocessing methods
which are then followed by standard methods of extreme value
theory to the preprocessed data. Results from this study show that
using preprocessing methods gives a better model fit compared to
direct use of extreme value theory models.

In a recent study [17] use GEVDwith time varying parameters to
model non-stationary extreme wave heights in some selected lo-
cations of the Greek sea. The GEVD parameters are estimated using
the conditional density network. Results from this case study show
that the Greek coastal areas are at high risk of extreme high waves.
An application of the GPD with time varying parameters to the
modelling of electricity demand in the United Kingdom is given in
Ref. [5]. The authors estimate the value at risk of electricity demand.

It is important to carry out regular assessments of the frequency
of occurrence of extreme peak electricity demand for ensuring the
stability of the grid [19]. The use of regression quantile models in
the modelling of extreme wave height distributions is proposed in
Ref. [24]. Data from two Portuguese locations is used. The proposed
regression quantile models used are the 3-parameter Weibull, the
generalised extreme value (GEV) and the generalised Pareto (GP).
Results from this study show that the GP regression quantile model
gives the best results when estimating the 50 and 100 year return
levels.

Modelling of South African daily peak electricity demand data is
discussed in literature [7,27]. This study focuses on themodelling of
daily peak electricity demand (DPED) data from South Africa's
power utility company, Eskom using extreme value theory

distributions. The GPD is fitted to DPED above a sufficiently high
time varying threshold after which we estimate extreme peak de-
mand using the k-period return level quantile function. The thrust
in this paper is in modelling time series extremes which requires
the modelling of the upper tail of a distribution. Modelling extreme
peak electricity demand helps decision makers in power utility
companies in planning the scheduling and dispatching of electrical
energy including long term planning for capacity expansion. The
main contribution of this paper is in the use of a cubic smoothing
spline with a positive shift factor in determining a sufficiently high
time varying threshold. We estimate the shift factor using the
extremal mixture models discussed in Ref. [31]. The excesses above
the threshold are declustered using the intervals estimator method
discussed in Ref. [11]. A GPD is then fitted to cluster maxima. This is
followed by the inclusion of temperature as a covariate in the GPD
parameters. The effectiveness of this modelling approach is shown
through a simulation study. A comparative analysis is done with a
GEV regression quantile model.

The rest of the paper is organized as follows. A discussion of the
modelling of non-stationary time series using the generalised
Pareto family of distributions is given in Section 2. Section 3 pre-
sents a discussion of the generalised extreme value family of dis-
tributions. The predictive performance of the EVT models is
discussed in Section 4 while a simulation study is presented in
Section 5. Empirical results are presented in Section 6 while Section
7 concludes.

2. Modelling non-stationary time series using the generalised
Pareto distribution

The generalized Pareto distribution (GPD) is a peaks-over-
threshold model normally used in modelling exceedances above a
sufficiently high threshold. If the time series data is available, the
GPD is usually used instead of the generalised extreme value (GEV)
distribution [4] which uses only one observation in a block. This
results in loss of important information from other observations in
the block.

Let Yt denote daily peak electricity demand (DPED) on day twith
associated time varying covariates Xt , for t ¼ 1;…;n, where n is the
number of observations. The objective is to estimate extreme
quantiles of Yt above a high time varying threshold, tðtÞ. These
extreme quantiles are denoted by yk;t and are conditional on the
covariates Xt and PðYt > yk;t

��Xt ¼ xtÞ is the tail probability above the
quantile yk;t . On average the high quantile yk;t is exceeded
approximately once every 1

k observations [10]. The observations yt
above tðtÞ are assumed to follow a GPD, i.e.

Yt � GPDðsðxtÞ; xðxtÞÞ (1)

where sðxtÞ and xðxtÞ are the scale and shape parameters respec-
tively which depend on the time varying covariate xt . The distri-
bution function is given by

WðytÞ ¼ 1�
�
1þ xðxtÞðyt � tðtÞÞ

sðxtÞ
�� 1

xðxtÞ
(2)

where xðxtÞs0, yt is the DPED data and the parameters are
modelled as functions of the covariate xt . In order to ensure that the
scale parameter is always positive we reparametrise it as
q ¼ logðsðxtÞÞ.

Electricity demand data exhibit strong seasonality and are
highly sensitive to temperature fluctuations. To account for the
seasonality and temperature effects themodel specification is given
as:
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