Energy 118 (2017) 1-17

Contents lists available at ScienceDirect

Energy

journal homepage: www.elsevier.com/locate/energy

Parametric study on catalytic tri-reforming of methane for syngas production

^a Dept. of Mechanical Engineering, National Chung Hsing University, Taichung, 40227, Taiwan
^b Division of Chemistry, Institute of Nuclear Energy Research, Taoyuan, 32546, Taiwan

ARTICLE INFO

Article history: Received 19 August 2016 Received in revised form 31 October 2016 Accepted 30 November 2016

Keywords: Tri-reforming of methane (TRM) Delay factor Flue gas H₂/CO ratio Water-gas shift (WGS) reaction

ABSTRACT

A two-dimensional numerical model for syngas production from tri-reforming of methane (TRM) in adiabatic tubular fixed-bed reactors was established. From the results obtained, it was found that reactant must be preheated to certain temperatures for TRM activation. Although the delay factor accounting for the varying catalytic bed activities produced different temperature and species mole fraction profiles in the reactor upstream, the reactor performance was delay factor independent if the reactor outlet results were used because nearly identical temperature and species mole fraction variations were obtained at the reactor downstream. The numerical results also indicated that reverse water-gas shift reaction plays an important role for H₂ and CO yields. With higher O₂ in reactant, high temperature resulted, leading to lower H₂/CO ratio. The absence of H₂O in the reactant caused dry reforming of methane as the dominant reaction, resulting in H₂/CO ratio close to 3. Using flue gas from combustion as TRM feedstock, it was found that H₂/CO ratio was enhanced using lower CH₄ amount in reactant. High-temperature flue gas was suggested for TRM for the activation requirement.

© 2016 Published by Elsevier Ltd.

1. Introduction

CH₄–CO₂ reforming combines two of the most problematic greenhouse gases to generate syngas for the synthesis of clean liquid fuels and valuable chemicals. This process is therefore a promising reaction for global warming control. However, this process requires high energy input and there is a risk of carbon formation that would deactivate the catalyst [1]. To overcome these problems, a novel tri-reforming of methane (TRM) process that combines three generally used methane reforming reactions for syngas production was proposed by Song and Pan [2]. In TRM the following reactions are coupled and carried out in a single reactor:

Steam reforming of methane (SRM):

$$CH_4 + H_2 O \leftrightarrow CO + 3H_2, \Delta H^0_{298K} = +206 \text{ kJ/mole}$$
 (1)

Dry reforming of methane with CO₂ (DRM):

$$CH_4 + CO_2 \leftrightarrow 2CO + 2H_2, \Delta H_{298K}^0 = +247 \text{ kJ/mole}$$
 (2)

Partial oxidation of methane (POM):

$$CH_4 + 0.5O_2 \leftrightarrow CO + 2H_2, \Delta H^0_{298K} = -36 \text{ kJ/mole}$$
 (3)

As shown in Eqs. (1)-(3) TRM combines the endothermic SRM and DRM reactions with the exothermic POM reaction. The heat released from POM is used as the heat supply for SRM and DRM and makes the TRM more energy efficient [3].

In addition to energy efficiency, TRM offers several advantages for syngas production compared with the single reaction described in Eqs. (1)–(3). As shown in Eq. (2), CO_2 is used as the feedstock for DRM. As noted by Song and Pan [2], the TRM concept does not require a pure CO_2 supply in the reaction. This implies that the flue gas from the combustion processes of power plants or the coke oven gas (COG) from iron-making industries can be used directly as a CO_2 source for TRM [4–6]. TRM can also be used to upgrade the syngas quality produced from biomass or coal gasification [7,8]. The H₂/CO ratio in syngas produced from tri-reforming can be adjusted using varied amounts of reactants to satisfy the requirement for further processes such as methanol and Fischer-Tropsch syntheses [9,10].

^{*} Corresponding author. E-mail address: ryjein@gmail.com (R.-Y. Chein).

Nomenclature		R	universal gas constant, 8.314 J mol $^{-1}$ K $^{-1}$
		R_b	reactor radius, m
C_F	Forchheimer drag coefficient	R_j	production/destruction rate of species j, kg m ⁻³ s ⁻¹
c_p	gas specific heat, J kg $^{-1}$ K $^{-1}$	r _i	kinetic rate of reaction i, mol k g_{cat} s ⁻¹
D_{ij}	binary molecular diffusion coefficient, m 2 s $^{-1}$	r	radial direction
D_i^T	thermal diffusion coefficient of species i, $m^2 s^{-1}$	Т	temperature, K
d_p	catalyst particle diameter, m	\overrightarrow{V}	velocity, m s ^{-1}
F	volumetric flow rate of gas mixture, $m^3 s^{-1}$	v_0	averaged inlet velocity, m s^{-1}
f	delay factor	Х	species conversion
h	heat transfer coefficient, W m^{-2} K $^{-1}$	Y	species yield
Κ	catalyst bed permeability, m^{-2}	x_i	mole fraction of species j
Kj	surface adsorption equilibrium constant of species j, Pa ⁻¹	z	axial direction
K ^C	surface adsorption equilibrium constant of species j in	Greek symbols	
J	combustion reaction. Pa^{-1}	ε	catalyst bed porosity
Keni	equilibrium constant of reaction i	η	effectiveness factor
k k	rate constant of reaction i. mol $Pa^{0.5}kg_{cat} s^{-1}$, or mol Pa	λ	thermal conductivity, W m^{-1} K $^{-1}$
	$kg_{cat} s^{-1}$	μ	viscosity, kg m ^{-1} s ^{-1}
L	length of reactor, m	ν	Stoichiometric coefficient
m_{cat}	catalyst weight, g	ρ	density, kg m ⁻³
Mi	molecular weight of species j, g mol ^{-1}		
m _i	mass fraction of species j	Subscrip	ot and the second s
n _i	molar flow rate of species j, mole s^{-1}	in	inlet
Nc	number of species in the gas mixture	m	gas mixture
p	pressure, Pa	out	outlet
0	volumetric flow rate, $m^3 s^{-1}$	R	reaction
q_c	energy source term due to the chemical reaction. W	ref	reference state
20	m ⁻³	cat	catalyst

TRM has been studied both experimentally and analytically in the literature. In the experimental study of Majewski and Wood [11], a nickel-silica core-shell catalyst was applied for TRM in a fixed-bed reactor. The optimal composition was determined for TRM for syngas production appropriate for methanol synthesis. Using thermodynamic analysis based on the Gibbs energy minimization, Zhang et al. [12] found that high temperature and low pressure are favorable to achieve high $H_2\ production\ and\ CO_2$ conversion. Excessive addition of H₂O, O₂, and CO₂ bring about lower H₂ yield and CO₂ conversion, while low concentrations of H₂O, O₂, and CO₂ resulted in more intense carbon formation. In the study of Arab Aboosadi et al. [13], TRM performance in terms of CH₄ conversion, H₂ yield and H₂/CO ratio was demonstrated in a fixedbed reactor using a 1-D heterogeneous model. Optimized reactant composition was reported by considering H₂ yield as the objective function. A similar study was carried out by Khajeh et al. [14] in which TRM performance using fluidized-bed and fixed-bed reactors was compared. Based on the concept that heat generated by TRM can be used as a heat source, Farniaei et al. [15] developed a mathematical model to simulate a coupled TRM-DRM reactor. Their results showed that CH₄ conversion at the DRM and TRM output sides reached 63% and 93%, respectively. In the study of Cho et al. [16] a simulation model was developed for syngas production from TRM. The TRM reactor consisted of a homogeneous part where oxidation leads to a temperature increase required for the reforming reactions and a catalytic part where the reforming reactions take place. The developed model was used to optimize the reactor design parameters and operating conditions.

Similar to the CO/CO₂ hydrogenation reaction, a challenging problem for TRM is to find active and stable catalysts. The most popular catalysts for TRM are nickel supported by a wide range of different materials (Al₂O₃, ZrO₂, CeO₂, etc.). Another problem is

deactivation of supported metal catalysts due to carbon formation [17]. Carbon formation fouls the metal surfaces, blocks the catalyst support pores and voids, causing catalyst support physical disintegration and may also promote undesirable side reactions [18,19]. Because the TRM is similar to the catalytic partial oxidation (CPO) of methane [20,21], catalysts developed for the CPO may also be applied to TRM as reviewed by Al-Sayari [22].

٦

Although TRM has been studied extensively in the past, most of these studies focused on finding the optimum reactant composition for producing a suitable H_2/CO ratio for further use. Very few studies focused on a complete, systematic study of the effects due to operating conditions and reactant composition. A two-dimensional numerical model solving the coupled governing equations including gas flow, heat transfer and chemical reaction is established in this study and applied to a fixed-bed TRM reactor. TRM performance characterized by CH₄ conversion, H₂ yield, CO yield and H₂/CO ratio is investigated under various operating conditions and syngas compositions. As noted by Song and Pan [2], TRM is originally developed for converting CO₂ in flue gas into useful syngas. Another objective of this study is to identify the CH₄ amount effect on converting flue gas into useful syngas which was also little discussed in the literature.

2. Physical and mathematical models

2.1. Mathematical model

The tubular fixed-bed reactor used in this study is shown in Fig. 1. The reactor has a length of L and a radius of R_b . A reactant consisting of CH₄, O₂, H₂O, CO₂, and N₂ is introduced into the reactor from the reactor bottom. Note that N₂ serves as the balance inert gas in the reaction. The pressure, temperature and volumetric

Download English Version:

https://daneshyari.com/en/article/5477035

Download Persian Version:

https://daneshyari.com/article/5477035

Daneshyari.com