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a b s t r a c t

The share of electricity generated from intermittent renewable sources, e.g., wind and solar grows
rapidly. This affects grid stability and power quality. If the share of renewable power generation is to be
increased further, additional flexibilities must be introduced.

Aggregating small, distributed loads and energy storage facilities is a good medium-term option. In
this paper, the suitability of decentralized and on-site optimized storage system consisting of repurposed
electric vehicle batteries for grid balancing is investigated. Battery operation is controlled via an opti-
mization procedure, which relies on a one-way communicated pseudo-cost function (PCF). Day-ahead
electricity stock market prices are used as the PCF.

Based on one year simulations, a sequential quadratic programming (SQP) approach is compared to a
dynamic programming (DP) and an integer linear programming (ILP) approach with respect to runtime
and control objective. All approaches lead to very similar results, however ILP leads to the shortest
runtimes. ILP is then used to investigate the grid balancing potential using last decade's hourly day-
ahead prices. Higher market data resolutions featuring quarter-hours introduced in 2014 lead to
higher earnings. For hourly day-ahead prices the optimal capacity-to-power ratio of the battery is
approximately 6 h while for quarter-hourly prices it is about 3 h.

© 2016 Published by Elsevier Ltd.

1. Introduction

Global warming and dwindling fossil resources have sparked a
strong growth in renewable power generation. Some industrialized
countries have set very ambitious targets for increasing the pro-
portion of renewables in electricity production [1]. For example,
Germany plans to generate 80% of its electricity from renewable
sources by 2050 [2]. However, fluctuating sources of renewable
energy such as wind and solar severely affect grid operation [3,4].
Supply and demand imbalances are traditionally compensated for
by large-scale buffer storage systems, e.g. pumped storage hydro
power plants. These grid balancing strategies are limited by infra-
structural considerations [5]. Therefore, developing additional,
modular strategies for grid balancing are necessary [3,6].

Aggregating small, distributed loads and energy storage facil-
ities constitutes a promising approach. Such a strategy would

reduce the need for new power plants [7]. In this context, demand
sidemanagement (DSM), which is known as a portfolio ofmeasures
to balance the electrical grid on consumption side [6], has been
extensively discussed [8]. In DSM, controllable, flexible loads and
energy storage facilities reduce, increase or shift energy con-
sumption in order to line up electric energy usage with generation
[6]. The most important strategies used are peak clipping, valley
filling, load shifting, strategic conservation, strategic load growth,
and flexible load shaping [9]. To motivate consumers to change
their consumption from the nominal pattern to respond according
to the actual electric energy generation, a specific tariff or program
has to be provided [10]. Han et al. [11] distinguish between
incentive- and time-based demand response (DR). In Ref. [10], they
further divide incentive-based DR in classical and market-based
DR. In case of classical DR, consumers agree to give-up the con-
trol of certain devices or react by limiting their consumption based
on payments or preferential prices. Market-based DR allows con-
sumers to bid with their loads and energy storage facilities on an
appropriate marketplace. Time-based DR depend on received event
signals e.g. price which stimulates devices to react with their
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demand [11].
Contrary to DSM, distributed loads and energy storage facilities

could be introduced to the power grid with the specific aim of
balancing the grid.

In any case, these devices that are to be used for grid balancing
have to be equipped with communication hardware. While most
grid balancing concepts require two-way communication [12] - as
price signals, bid data, etc. have to be transmitted between utilities
and loads and energy storage facilities [10] - local, autonomous
control with unidirectional communication proposed in Ref. [13]
has been demonstrated as a robust and cost effective alternative.

With an increasing share of decentralized and fluctuating elec-
tricity generation due to sources such as wind and solar the voltage
level in the power grid is affected [14,15]. Such sources are often
connected to the low voltage grid [16e18]. Active and reactive
power control strategies have been discussed and applied to limit
the voltage rise [14,15,19].

Battery storage systems are suitable for either large-scale ap-
plications or for aggregated approaches. They are practically
maintenance-free [20], fast to respond [21], and highly efficient
[22]. They have total round-trip efficiencies, including AC-DC con-
verters, ranging from 65% to almost 90% [23]. Various types of
battery storage systems have been investigated for balancing
electrical grids [24e26]. A range of cell chemistry types have been
considered, particularly lithium-ion (Li-ion), sodium sulfur (NaS),
ZEBRA (Na-NiCl2), nickel-cadmium (NiCd), nickel-metal hydride
(NiMH), and lead acid (Pb-acid) type batteries [27,28]. Divya et al.
[29] state that the application timescales for future battery storage
systems may range from seconds to days. Battery storage systems
have been already investigated in large-scale applications for pri-
mary frequency control [30] and for secondary control [31]. Since
lifecycle costs for such systems are higher than, for instance,
pumped storage hydro power plants [32], numerous applications
seek to aggregate already existing, small battery storage systems.

Often, photovoltaic power systems are combined with small bat-
tery banks to increase the self-consumption [33]. Since the capacity
of such batteries is not entirely used at all times, a DSM motivated
approach would further increase the efficiency of usage. Such
concepts have been extensively discussed in Ref. [34]. Guille et al.
[35] state that on an average, electric vehicles (EV) stay idle for
about 22 h a day. Hence, in DSM, the idea of aggregating batteries of
EVs for control strategies, a concept which is known as vehicle-to-
grid (V2G), seems to be promising and was proposed, among
others, in Refs. [29,36e40]. Daimler announced [41] that it plans to
re-use their old EV batteries and connect them to the electrical grid,
thus building the world's largest stationary storage facility with a
capacity of 13 MWh. Using repurposed electric vehicle batteries
may help to offset the costs associated with battery-based systems
[42]. Batteries are generally not used in EVs once their capacity falls
below 70e80% [43] of the initial capacity. However, they are still
useful for stationary applications. This second-use approach also
reduces the ecological footprint [44].

In the current paper, local, autonomous control with a unidi-
rectionally communicated time-based event signal (pseudo-cost
function) [45] (as is often used in DSM), which has been success-
fully tested for domestic hot water heaters [46], is applied to bat-
tery storage systems. In a previous paper [47], the potential of
ZEBRA (Zero Emission Battery Research Activities) batteries for
autonomous control has been investigated by simulation. In this
paper steps are taken towards implementing the approach on a
physical battery system by developing an embedded control system
with highly efficient simulation and optimization routines. To this
end, different nonlinear and linear optimization approaches are
compared with respect to computational costs and resulting con-
trol optimality. A sequential quadratic programming approach
(SQP) is used for non-linear optimization. Dynamic programming
(DP) as well as integer linear programming (ILP) are approaches
considered for linear optimization. The grid balancing potential is

Nomenclature

A Surface area of the battery pack (m2)
C Path dependent costs in DP (V)
c Pseudo-cost function (V/MWh)
cp Specific heat capacity (J/(kg$K))
d Thickness of battery pack isolation (m)
Eel Electrical energy content (J)
EðnsÞ
el Scaled electrical energy content (J)

f Heat removal proportionality constant (W/K)
gl, gu Constraints for lower and upper Eel in SQP (J)
h Connective heat transfer coefficient ðW=ðm2$KÞÞ
IDC Direct charge/discharge current (A)
IðnsÞ
DC Scaled charge/discharge current (A)
k Thermal conductivity ðW=ðm$KÞÞ
m Battery mass (kg)
mðnsÞ Scaled battery mass (kg)
n Total number of data point (�)
nc Number of battery cells per string (�)
ns Number of battery cell strings (�)
PAC Alternating power (W)
PDC Direct power (W)
PðnsÞ
DC Scaled direct power (W)

Pfan Cooling fan power (W)
PðnsÞ
fan Scaled cooling fan power (W)

Ph Auxiliary heating power (W)

PðnsÞ
h Scaled auxiliary heating power (W)

Ploss Linearized battery losses (W)
PRi Dissipated heat transfer rate due to internal resistance

(W)
PðnsÞ
Ri Scaled dissipated heat transfer rate due to internal

resistance (W)
_Qcool Heat transfer rate due to cooling (W)
_Q
ðnsÞ
cool Scaled heat transfer rate due to cooling (W)
_Q loss Heat loss via insulation (W)
_Q
ðnsÞ
loss Scaled heat loss via insulation (W)

Rc Internal resistance of single cell (U)
Ri Internal resistance (U)
SOC State of charge (%)
s Discrete states in dynamic programming (�)
T Battery temperature (�C)
Tamb Ambient temperature (�C)
t Time (s)
UDC Direct terminal voltage (V)
UT Thermal transmittance ðW=ðm2$KÞÞ
uAC Decision variable on AC power side (�)
uDC Decision variable on DC power side (�)
hin Charge converter efficiency (�)
hout Discharge converter efficiency (�)
t Time interval for analytic solution (s)
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