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Abstract— Micro-circuits are mesoscopic scale networks and 

play an important role in cognition, emotion, and learning. 
Analysis of micro-circuits provides a system-level understanding 
of the neurobiology of health and disease. We propose a 
computational framework for micro-circuit analysis. The 
proposed framework combines miniature cellular imaging and 
network modeling. We used the proposed framework to study 
micro-circuits of D1 and D2 medium spiny neurons in the dorsal 
striatum for saline and cocaine injection. We found that cocaine 
injection had reduced numbers of total-, cross-, and self-links, 
relative to saline injection. The proposed method enables us to 
develop a circuit-based approach to understand the brain.  
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I. INTRODUCTION 
The analysis of circuit of interacting neurons has the potential 
to revolutionize neuroscience research and represents a real 
gap[1]. Increasing evidence supports nonrandom connectivity 
patterns exist between adjacent neurons during cognition and 
emotion[2]–[5]. Interactions among a set of neurons form a 
mesoscopic scale network (millimeter-to-micrometer 
resolution)[1]. Mesoscopic scale networks are micro-circuits. 
Micro-circuits are likely the substrate for cognitive processes 
underlying learning and memory. Analysis of micro-circuits 
measures intrinsic firing patterns and provides a system-level 
understanding of the neurobiology of health and disease.  

Miniature cellular imaging[6]–[8] enables us to investigate 
micro-circuits during behaviors, for an understanding of 
network architecture of behavior, cognition, and emotion. 
Miniature cellular imaging records neuronal activity at cellular 

and sub-second levels of spatial and temporal resolution in 
freely moving animals. It is complementary to other brain 
recording techniques. First, compared with multi-electrode 
recording, miniature cellular imaging can probe all cells in the 
field of view[9]. Second, compared with magnetic resonance 
imaging or positron emission tomography that measures brain 
activity at the macroscopic scale with low temporal resolution, 
miniature cellular imaging provides high spatial and temporal 
resolution. Third, compared with non-miniature cellular 
imaging, miniature microscopes allow concurrent tracking of 
neural calcium activities of hundreds of neurons in superficial 
and deep brain areas of freely moving mice and rats.  

We propose a computational framework for micro-circuit 
analysis called Advanced Computing for MIcro-Circuit 
Analysis (ACMICA). ACMICA combines miniature cellular 
imaging and network modeling. Miniature cellular imaging 
data analysis generally includes two steps: data preprocessing 
and modeling. Data preprocessing includes image registration, 
cell sorting, and spike detection. Several tools have been 
previously developed for data preprocessing[10], [11]. 
However, subsequent modeling methods are often based on 
simple statistical analysis methods such as correlation 
analysis. Such methods have limited capability to reveal 
interactions among neural dynamics. We hereby propose 
ACMICA to examine micro-circuits. ACMICA enables us to 
move toward a circuit-based approach to understand the brain, 
in which a behavior is understood to result from specific 
spatiotemporal patterns of circuit activity related to specific 
neuronal populations. 

 

II. METHODS 
In a micro-circuit, nodes are neurons, and edges (links) 
represent interactions among neural dynamics. If a set of 
nodes, i, affects the activity of node i in a statistical sense, 
then there exists a link between node i and the nodes in i.  

Figure 1 is the flowchart of ACMICA. ACMICA includes 
these components: preprocessing, association calculation, 
graph generation, graph descriptor calculation, and brain-
behavior analysis. ACMICA uses a validated miniature 
cellular imaging data preprocessing pipeline[13] including 
image registration, cell sorting, and spike detection. Let P and 
T denote the number of neurons and the number of time 
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points, respectively. The preprocessing step results in x1:T and 
s1:T. For each subject, xt is a P-dimensional vector representing 
calcium transients of all neurons at time t; and the sequence 
x1:T =(x1, …, xT) represents calcium transients for all time 
points. For neuron i, si = 1 indicates a calcium transient event, 
while si = 0 indicates no event. The collection of st is s1:T.  

We use a Dynamic Bayesian Network (DBN) to represent 
interactions among neural dynamics. A DBN is an extension 
of Bayesian network to model temporal processes. DBNs can 
characterize system dynamics, handle noisy data, to describe 
locally interacting processes, and to support causal 
inference[12]. A DBN is defined as a pair, (B1, B ), where B1 
is a Bayesian network defining the baseline probability 
distribution; and B  defines the transition probability P(st+1 | 
st). That is, B  is a two-slice temporal Bayesian network 
(2TBN). 

    Network construction infers the graph based on s1:T. It has 
two steps: association calculation and graph generation. In 
association calculation, the state of node i at time point t is 
determined by the states of its parent set before t, and 
independent of the states of any other nodes. We use i to 
denote the parent set of node i. i is a subset of St-1. For 
example, if SA

t-1 and SB
t-1 determines  SC

t, then C = (SA
t-1,SB

t-1). 
The association between a node and a set of other nodes is 
measured by the Bayesian Dirichelet score[14]. For each node, 
we use the algorithm in [12] to search for a set of nodes which 
maximizes the Bayesian Dirichelet score. This set of nodes is 

i. Based on i, we can generate a graph G. G describes the 
interactions among neural dynamics.  

    In graph descriptor calculation, we calculate a set of graph 
descriptors to characterize graph complexity. Graph 
descriptors are quantitative metrics to represent micro-circuit 
characteristics. Graph descriptors are numerical graph 

invariants that quantitatively characterize the topology or the 
information-theoretic aspect of the underlying network.  

    The last step is brain-behavior analysis to model 
associations among graph descriptors and behavior variables. 
We generate a micro-circuit for each experimental condition. 
Then we calculate graph descriptors. We compare graph 
descriptors across different conditions.  

 

III. RESULTS 
In this experiment, we examined micro-circuits of D1 and 

D2 medium spiny neurons (MSNs) in the dorsal striatum. We 
re-analyzed the MSN data described in [13]. Dr. Da-Ting Lin 
at National Institute on Drug Abuse acquired this dataset[13]. 
In this dataset, Cre-dependent AAV-GCaMP6 was injected 
into D1-Cre and D2-Cre mice to selectively label D1- or D2-
MSN in the dorsal striatum. Subsequently, a gradient index 
(GRIN) lens was implanted into the dorsal striatum, and a 
calcium imaging device was mounted above the GRIN lens.  

For a mouse, six sessions of MSN (D1 or D2) neural 
activity data for about 200 neurons in the dorsal striatum were 
acquired. There were two conditions in the experiment: saline 
injection and cocaine injection. Let C denote this behavior 
variable. For each condition (saline or cocaine injection), three 
sessions of 5-minute imaging for calcium signal were 
conducted; and there was a 5-minute rest between two 
consecutive sessions. In each session, 3000 images were 
acquired. There were 18000 images in total for saline or 
cocaine injection. The above procedure was repeated for five 
days.  

Using ACMICA, we constructed a micro-circuit for each 
condition and day. There were five days and two conditions 
(saline or cocaine injection). Therefore, we generated 10 
networks for each mouse.  

Figure 2 is the generated networks for a D1-MSN at day 1. 
The left panel is the network for saline injection and the right 
panel is for cocaine injection.   

We classified the detected links as self-link or cross-link. A 

self-link is a link representing that the state of a neuron at time 

 
 

Figure 1 Flowchart of ACMICA 

Figure 2 Micro-circuits for saline (left panel) and 
cocaine injection (right panel).  
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