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Abstract

The radiation reaction effects on electron dynamics in counter-propagating circularly polarized laser beams are investigated through the
linearization theorem and the results are in great agreement with numeric solutions. For the first time, the properties of fixed points in electron
phase-space were analyzed with linear stability theory, showing that center nodes will become attractors if the classical radiation reaction is
considered. Electron dynamics are significantly affected by the properties of the fixed points and the electron phase-space densities are found to
be increasing exponentially near the attractors. The density growth rates are derived theoretically and further verified by particle-in-cell sim-
ulations, which can be detected in experiments to explore the effects of radiation reaction qualitatively. The attractor can also facilitate realizing
a series of nanometer-scaled flying electron slices via adjusting the colliding laser frequencies.
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1. Introduction

The interactions of ultra-short and ultra-intense laser pulses
with various plasmas can generate brilliant sources of ener-
getic electrons, ions, X/g-rays, and positrons with proper laser
plasma parameters [1e5]. Electrons are the most fundamental
particles in laser plasma interaction as electrons can be easily
accelerated to relativistic velocities with laser intensities
higher than 1018 W/cm2 [6e8]. The electron dynamics in laser

fields has been investigated thoroughly under the framework
of classical electrodynamics. However, with the advent of
more powerful laser facilities, laser intensities are about to
achieve 1023 W/cm2 [9] and electron dynamics in such intense
laser fields are substantially different since here the magnitude
of radiation reaction (RR) force and Lorentz force are com-
parable [10]. The quantum electrodynamics (QED) based
numeric method [11e15] provides an explicitly self-consistent
description of electron discrete emission and the correspond-
ing radiation recoil. Semi-classical description [16,17] of ra-
diation reaction force provides a reliable theoretical method to
estimate the continuous radiation effects, avoiding the well-
known self-acceleration solutions of classical models [18].
Novel phenomena beyond the framework of classical elec-
trodynamics are predicted by the semi-classical method and
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QED model such as the radiation trapping [19e21], phase
space contraction [22,23], QED induced stochastic effect
[15,24] and eþe� pair production [25].

Experimental detection of radiation reaction effect could be
difficult as it is almost unaccessible to measure the micro-
scopic quantities of a single electron motion. However, with
proper experimental setup, the tiny differences in electron
dynamics can lead to the changes of macroscopic quantities
that can be measured with available techniques [26,27].
Detecting the angular distribution changing of the electron or
its emitted photon in counter-propagating laser fields provides
an optimal method to qualitatively explore the signatures of
radiation reaction [28,29]. Recently, g-ray generation and pair
production in counter-propagating laser fields have been
investigated widely [30e32], whereas the electron spatio-
temporal evolution near the attractors in intense colliding laser
beams still lacks a quantitative prediction. On the other hand,
for laser radiation with 1 mm wavelength, the radiation friction
force changes the scenario of the electromagnetic wave
interaction with matters at the intensity of IRz 1023 W/cm2.
For the laser intensity close to IR, the electron interaction
with the electromagnetic field is principally determined by a
counterplay between the radiation friction and quantum ef-
fects [5,33]. When the laser intensity is higher than
IQ ¼ 5.75 � 1023 (1 mm/l) W/cm2, the QED effects weaken
the electromagnetic emission [34] and the process of photon
emission becomes stochastic [11]. Provided that the QED
induced radiation is weakened and the stochastic effect is
indifferent under the laser intensity lower than IQ, the classical
radiation reaction approach still gives us valid results. In this
paper, we utilized the classical radiation reaction model to
investigate the electron dynamics in counter-propagating laser
fields. The presented electron spatiotemporal evolution was
dominantly affected by the fixed points in electron phase-
space and the analytical solutions of electron dynamics were
obtained with linear stability theory [35]. It is found that the
spiral attractors induced by radiation reaction can lead to
exponential growth of in situ density and the analytic growth
rates were given and compared with numeric solutions.

2. Theoretical analysis

For simplicity and generality, the counter propagating laser
pulses are described by infinite plane wave vector potential,
A1 ¼ a0½sinðt � xÞby þ cosðt � xÞbz� and A2 ¼ a0½sinðt þ xÞbyþ
cosðt þ xÞbz�; byðor bzÞ is the unit vector in y (or z) direction;
a0 is the normalized laser amplitude (a0 ¼ eE0/mecw0),
where e and me are the electron charge and mass, E0 and
w0 are the electric amplitude and frequency, c is the speed
of light, respectively; x and t are normalized to c/w0 and
w0, respectively. The electromagnetic standing wave (SW)
field can be deduced as E ¼ �vA=vt ¼ �2a0cos xð Þcos tð Þby þ
2a0cos xð Þsin tð Þbz and B ¼ V� A ¼ 2a0sin xð Þcos tð Þby�
2a0sin xð Þsin tð Þbz from the whole region vector potential
A ¼ A1 þ A2.

First of all, considering the condition without RR recoil,
electron dynamics in phase-space x-px is determined by

relativistic Lorentz force dp=dt ¼ vA=vt � v� ðV� AÞ. As
SW field is independent of y and z, there are two invariant
equations:

dpy
dt

¼ vAy

vt
þ vx

vAy

vx
¼ dAy

dt
; ð1Þ

dpz
dt

¼ vAz

vt
þ vx

vAz

vx
¼ dAz

dt
: ð2Þ

Assuming at initial time py
��
t¼0

¼ Ay

��
t¼0

(pz
��
t¼0

¼ Az

��
t¼0

),
the above conservative relations tell us that
pz ≡ Az ¼ 2a0cos(x)cos(t) ( py ≡ Ay ¼ 2a0cos(x)sin(t)). For the

relativistic factor g ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ p2x þ 4a20cos

2ðxÞ
p

, the nonlinear

differential equation in x-px space is derived as:

dx

dt
¼ px

g
¼ pxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ p2x þ 4a20cos
2ðxÞp ; ð3Þ

dpx
dt

¼�vyBz þ vzBy ¼ 4a20cosðxÞsinðxÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ p2x þ 4a20cos

2ðxÞp : ð4Þ

From the time-independent nonlinear relationship Eqs. (3)
and (4) (i.e., autonomous nonlinear system in mathematics),
we can exactly find that the relativistic factor is a conservative
Hamiltonian:

H ¼ g¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ p2x þ 4a20cos

2 xð Þ
q

; ð5Þ

since dH=dt ¼ vH=vt≡0 is validated from the corresponding
canonical equation dx/dt ¼ vg/vpx ¼ f(x, px) and dpx/
dt ¼ �vg/vx ¼ g(x, px), which are completely equivalent with
Eqs. (3) and (4). The Hamiltonian H is symmetrical and pe-
riodic, and note that there are some special solutions of these
differential equations when the initial value ðx�; p�xÞ satisfies
f ðx�; p�xÞ ¼ 0 and gðx�; p�xÞ ¼ 0. This is the constant solution
ðx; pxÞ≡ðx�; p�xÞ. A constant solution such as this is called an
equilibrium solution or equilibrium point for the equation [35].
Subsequently there are four equilibrium points ðx�; p�xÞ at
electric nodes (p/2, 0), (3p/2, 0) and antinodes (0, 0), (p, 0) in
a SW period, as shown in Fig. 1(a). The property of an equi-
librium point in the nonlinear system can be classified via its
linear approximation near the equilibrium point. The Jacobian
matrix is a linearization method via calculating the first partial
derivatives, which facilitates us to investigate the property of
the equilibrium point [35,36]. To determine whether the
equilibrium point is stable or not, by making the disturbance
expansion near ðx� x�; px � p�xÞ and dropping quadratic terms
to linearize Eqs. (3) and (4), the characteristic Jacobian matrix
Ja at the equilibrium point ðx�; p�xÞ is obtained:

Ja¼

0
BBB@

vf ðx;pxÞ
vx

vf ðx;pxÞ
vpx

vgðx;pxÞ
vx

vgðx;pxÞ
vpx

1
CCCA
x�;p�x

¼

0
BBB@

0
1

g

4a20cosð2xÞ
g

0

1
CCCA
x�;p�x

:

ð6Þ
For the electric node x* ¼ p/2 or 3p/2, the trace and

determinant of Jacobian matrix are tr(Ja) ¼ 0 and
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