
Original Article

A multilevel in space and energy solver for multigroup diffusion
eigenvalue problems

Ben C. Yee*, Brendan Kochunas, Edward W. Larsen
Department of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, MI 48109, USA

a r t i c l e i n f o

Article history:
Received 2 June 2017
Received in revised form
14 July 2017
Accepted 27 July 2017
Available online 5 August 2017

Keywords:
Multigroup diffusion
Multilevel
Eigenvalue

a b s t r a c t

In this paper, we present a new multilevel in space and energy diffusion (MSED) method for solving
multigroup diffusion eigenvalue problems. The MSED method can be described as a PI scheme with three
additional features: (1) a grey (one-group) diffusion equation used to efficiently converge the fission
source and eigenvalue, (2) a space-dependent Wielandt shift technique used to reduce the number of PIs
required, and (3) a multigrid-in-space linear solver for the linear solves required by each PI step. In
MSED, the convergence of the solution of the multigroup diffusion eigenvalue problem is accelerated by
performing work on lower-order equations with only one group and/or coarser spatial grids. Results
from several Fourier analyses and a one-dimensional test code are provided to verify the efficiency of the
MSED method and to justify the incorporation of the grey diffusion equation and the multigrid linear
solver. These results highlight the potential efficiency of the MSED method as a solver for multidi-
mensional multigroup diffusion eigenvalue problems, and they serve as a proof of principle for future
work. Our ultimate goal is to implement the MSED method as an efficient solver for the two-
dimensional/three-dimensional coarse mesh finite difference diffusion system in the Michigan parallel
characteristics transport code. The work in this paper represents a necessary step towards that goal.
© 2017 Korean Nuclear Society, Published by Elsevier Korea LLC. This is an open access article under the

CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

The multigroup diffusion eigenvalue problem is an approxima-
tion to the multigroup neutron transport eigenvalue problem that
is widely used for reactor physics simulations. The solution is
frequently used to accelerate the source iteration procedure for
solving neutron transport problems via methods such as coarse
mesh finite difference (CMFD) [1]. Although solving a diffusion
problem requires significantly fewer computational resources than
solving a transport problem, this cost is still not trivial. Many
transport codes that use CMFD-like procedures (e.g., the Michigan
parallel characteristics transport (MPACT) code [2]) have a CMFD
eigenvalue problem with hundreds of millions of unknowns, and
obtaining solutions to this problem constitutes a large portion of
the computational effort.

In this work, we introduce a newmultilevel in space and energy
diffusion (MSED) method for solving the multigroup diffusion
eigenvalue problem. This is a multicomponent method that draws

from existing ideas (multigrid-in-space [3] and two-grid in energy
[4]) as well as new ideas (space-dependent Wielandt shift [5]). The
three primary components of MSED are: (1) a “grey” (one-group)
diffusion equation, used to converge the eigenvalue and fission
source, (2) a space-dependent Wielandt shift, used to reduce the
number of power iterations (PIs) required for convergence, and (3)
a multigrid-in-space solver, used to solve the fixed-source grey and
multigroup diffusion linear systems.

The MSED method can be viewed as an extension of the CMFD
method. In CMFD, the convergence of a higher-order (more un-
knowns) transport or nodal diffusion system is accelerated by
leveraging a lower-order diffusion system. In MSED, this lower-
order diffusion system is itself accelerated by simpler diffusion
equations with even fewer unknowns. Fig. 1A provides a visuali-
zation of this hierarchy. Alternatively, the MSED method can be
viewed as an extension of the multigrid method to nonspatial
variables. Fig. 1B provides a visualization of the changes in spatial
and energy grid sizes in the MSED iteration scheme. These two
figures are further explained in Sections 2 and 3.

Of the methods that have been developed for reactor physics
simulations, the multilevel coarse mesh rebalance (MLCMR) and
multilevel surface rebalance (MLSR) methods developed by van
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Geemert and others [6e8] are the most similar to MSED. The
MLCMR and MLSR methods are techniques for nodal diffusion
problems, which leverage solutions from a series of lower-order
coarse-grid one-group diffusion equations in order to minimize
the number of iterations required on the full higher-order nodal
diffusion equations. In this sense, the approaches taken by the
MSED method and the MLCMR/MLSR methods are similardboth
methods minimize the computational effort required by shifting
iterations from higher-order equations to lower-order equations
that are less costly to solve. The MSED method is also similar to
multilevel CMFD methods [1,9,10]. In these cited works, the
multigroup CMFD equations are themselves accelerated by two-
group CMFD equations.

The MSED method draws from elements of both the rebalance
and multilevel CMFD concepts, but there are several important
distinctions. First, the CMFD problem motivating the development
of MSED is orders of magnitude larger (in terms of the number of
unknowns and the number of processors used) than any of the
applications in the works referenced above. Second, unlike the
MLCMR/MLSR techniques, MSED operates on a diffusion/CMFD
system in which the unknowns representing the neutron net cur-
rent have already been eliminateddthis simplifies the process of
collapsing onto coarser spatial/energy grids. Third, whereas the
multilevel CMFD techniques use flux-weighted cross-sections and
low-order “consistency factors” (commonly denoted by D̂, and
sometimes described as a “drift” vector/term) to generate its group-
collapsed equations, the MSED method uses both flux-weighted
cross-sections and flux-weighted diffusion coefficients, and does
not need additional “consistency factors” like the D̂ in the multi-
level CMFD methods. In this sense, the collapse in energy in MSED
is similar to that of theMLCMR/MLSRmethods. Another example in
which the diffusion coefficients are group-collapsed via flux-
weighting can be found in Schunert et al. [11]; there, the SN FEM-
discretized transport equations are accelerated by coarse-group
FEM-discretized diffusion equations. However, the coarsening in
space in MSED differs from all of the aforementioned exam-
plesdthe spatial variable in MSED is collapsed using a standard
multigrid approach in which coarse-grid equations are error
equations rather than approximations to the original system.
Moreover, this collapse in MSED is performed on both the grey and
the multigroup equations, as illustrated by Fig. 1B.

Lastly, we note that, like the MLCMR/MLSR methods, MSED uses
a one-group (grey) low-order equation rather than a two-group
equation. Although the referenced multilevel CMFD methods all
use a two-group structure as their coarsest energy grid, we have

found that the MSED method with a grey equation already per-
forms very well. Our Fourier analysis and numerical results indicate
that the MSED method, as described in this paper, has a spectral
radius of ~0.1. Because of this low spectral radius and the fact that a
grey system is simpler (easier to implement and solve) than a two-
group system, we have not yet been compelled to study the use of a
two-group system in the MSED method. Recent work by Cornejo
and Anistratov, however, has shown that additional energy grid(s)
between one group and G groups [12,13] can provide tangible im-
provements in the runtime, and it may be possible to use a similar
strategy to improve the MSED algorithm. In future work, we will
assess the potential benefit of both introducing an extra two-group
system to MSED and replacing the one-group system in MSED with
a two-group system.

Another motivation for the development of the MSEDmethod is
to reduce the reliance of MPACT on “black-box” Krylov linear
solvers. In recent years, many diffusion and CMFD codes have
become increasingly reliant on Krylov methods for solving their
linear systems. These methods are generally easy to implement due
to their availability in various linear algebra libraries such as PETSc
[14]. They perform reasonably well when compared to other
frequently used linear solvers such as SOR or GausseSeidel. How-
ever, many Krylov solvers (GMRES in particular) require a signifi-
cant amount of memory and may not be well-suited for high-
performance computing applications where memory is a limiting
resource. Moreover, Krylov methods generally do not account for
the physics and structure of the problem being solved, and their
convergence is typically slow for large problems unless a good
physics-based or problem-dependent preconditioner is applied to
the system. Inmany cases, such a preconditionermay not be known
and, even if one exists, constructing the preconditioner and
applying it to the linear system may require a significant compu-
tational effort. The approach taken by MSED is fundamentally
different from those taken by the Krylov methods. Whereas Krylov
methods are applicable to general linear systems, MSED is opti-
mized only for multigroup diffusion/CMFD eigenvalue problems.
MSED leverages our knowledge of the physics and structure of the
multigroup diffusion problem and is designed to exploit the unique
features of this problem.

In the following sections, we provide an overview of the theory
for the three components of MSED, describe the full algorithm, and
present results from our Fourier analysis and one-dimensional (1D)
test code. This paper should be viewed as an initial report for the
development of the MSED method, and the work presented in this
paper is a necessary initial step towards our ultimate goal of
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Fig. 1. Each figure provides an overview of the MSED iteration procedure. (A) The hierarchy of the equations in MSED is shown, with a scale on the left describing the relative
complexity of these equations (i.e., the number of unknowns). The higher (red) dashed box encloses the equations used in the CMFD method, while the lower (green) dashed box
encloses the equations used in the MSED method. (B) An MSED iteration is broken up into four steps, and the changes in the energy and spatial grid sizes at each step are visualized.
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