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a b s t r a c t

In this work, a scalable algorithm for model calibration in nuclear engineering applications is presented
and tested. The algorithm relies on the construction of surrogate models to replace the original model
within the region of interest. These surrogate models can be constructed efficiently via reduced order
modeling and subspace analysis. Once constructed, these surrogate models can be used to perform
computationally expensive mathematical analyses. This work proposes a surrogate based model cali-
bration algorithm. The proposed algorithm is used to calibrate various neutronics and thermal-hydraulics
parameters. The virtual environment for reactor applications-core simulator (VERA-CS) is used to
simulate a three-dimensional core depletion problem. The proposed algorithm is then used to construct
a reduced order model (a surrogate) which is then used in a Bayesian approach to calibrate the neu-
tronics and thermal-hydraulics parameters. The algorithm is tested and the benefits of data assimilation
and calibration are highlighted in an uncertainty quantification study and requantification after the
calibration process. Results showed that the proposed algorithm could help to reduce the uncertainty in
key reactor attributes based on experimental and operational data.
© 2017 Korean Nuclear Society, Published by Elsevier Korea LLC. This is an open access article under the

CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Any mathematical model is an approximate representation of
the real phenomenon of interest. Therefore, it is a common practice
within engineering research communities to improve the predict-
ability of mathematical models via model parameter calibration.
Model calibration is a mathematical tool based on solving an in-
verse problem using the connection between experimental and
operational data on one side and the mathematical model and its
parameters on the other. This connection is used to improve the
performance of the mathematical model by calibrating the model's
parameters, along with updating their uncertainties to improve
agreement of model predictions with experimental measurements
and operational data.

Model calibration (sometimes referred to as data assimilation)
has been used in various engineering fields, including nuclear en-
gineering, for the enhancement of the predictions made by math-
ematical models and simulations [1,2]. Although very useful, model

calibration analysis is hindered by twomajor challenges. The first is
the computational burden associated with the high fidelity models
(i.e., reactor core simulators). The second is the curse of dimen-
sionality associated with the number of model parameters that will
need to be calibrated (e.g., nuclear data cross-sections libraries).
Both challenges are further worsened given the fact that the model
calibration is an inverse optimization problem that requires mul-
tiple model executions.

Model calibration, utilizing the long operational experience
with light water reactors, could improve simulation fidelity. In this
work, the delayed rejection adaptive Metropolis (DRAM) algorithm
[3] will be used in conjunction with reduced order modeling based
surrogates, such that the end result is a practical and applicable
algorithm for model calibration for large scale reactor core simu-
lation, overcoming the two major challenges mentioned above.

DRAM is an algorithm for minimizing the samples required
versus using a Markov Chain Monte Carlo algorithm. The DRAM
method performs sample rejection by combining both the delayed
rejection and adaptive Metropolis methods. In the delayed rejec-
tion samples are not rejected directly by the Metropolis sampler; a
second stage proposal sample is generated with an acceptance
probability that is calculated to guarantee convergence to the
posterior probability density function. This second stage proposal
depends on the previous rejected samples, yielding partial
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adaptation of the proposed distribution at each step of the sam-
pling chain; therefore, the next stage can generate more reliable
sample points. These refinements are local in nature and are dis-
carded after each step [4,5]. By contrast, adaptive Metropolis relies
on global adaptation of the proposed covariance based on the
previously accepted samples in the chain. At certain intervals, the
proposed covariance is updated to adapt information gleaned from
the previous samples. This process of adaptation is introduced to
improve the mixing of the chain so that it covers the target dis-
tribution more efficiently for any given number of iterations.

Reduced order modeling can facilitate the two major challenges
mentioned earlier (high computational cost and the curse of
dimensionality). Mathematical surrogates can address the first
problem (the computational burden associated with running the
high fidelity reactor core simulators). By contrast, reducing the
dimensionality of the parameters of interest by identifying the
influential degrees of freedom (DoFs) using the algorithms pre-
sented in Chapter 2 and Chapter 3 of Ref. [6] will address the second
problem (the curse of dimensionality).

Ref. [1] introduced high order predictive model calibration al-
gorithms and applied them to relatively large scale applications,
while Ref. [2] performed model calibration for a few thermal-
hydraulic parameters using a lower order surrogate to replace the
actual thermal-hydraulics simulator. This work will employ poly-
nomial surrogate models to substitute for the original coupled
models in the virtual environment for reactor applications-core
simulator (VERA-CS), which uses MPACT (Michigan Parallel Char-
acteristics Transport Code) as a neutronics model, COBRA-TF
(COolant-Boiling in Rod Arrays-Two Fluids) as a sub-channel ther-
mal-hydraulics model, and ORIGEN (The Oak Ridge Isotope Gen-
eration) for the depletion of the fuel [7]. Therefore, this work
performs model calibration for a three-dimensional core depletion
problem with thermal-hydraulics feedback. Finally, cross-sections
(high dimensional parameter) will be calibrated along with the
few thermal-hydraulics parameters considered here. Verification is
completed using synthetic data, that is, data generated using VERA-
CSwith perturbed parameters, to determine if the actual parameter
perturbations can be assessed and ultimately used to enhance the
uncertainty associated with the responses of interest [5].

2. Surrogate based data assimilation and model calibration

Referring to Ref. [3], it can be noted that several steps make
DRAM limited to small-to-medium parameter dimensionality
problems with reasonable computational burden. If the model is
complex and characterized with high computational cost, then
DRAM is no longer a practical algorithm. Therefore, in this section, a
subspace-based surrogate model with a smaller number of DoFs
will be used to replace the original model of interest, VERA-CS.
Ref. [6] proposes gradient-based and gradient-free algorithms for
identifying the important and influential DoFs for single and multi-
physics modeling. Since the gradient calculation capability is not
always available, the gradient-free approach will be used in this
work to identify the influential DoFs in the form of basis vectors.

Once, the basis is determined (U), a second order goal-oriented
surrogate will be constructed as follows:
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where f is the response of interest (e.g., multiplication factor,
maximum fuel pin power, and maximum fuel pin temperature),
and Dx is the variation in the parameters of interest from the
reference values (e.g., cross-sections, fuel pellet-clad gap conduc-
tivity, and grid loss coefficient).

In order to reduce the number of model runs required to
construct the surrogate form, the gradient-free approach
mentioned before is used to calculate the basis matrix (U) of the
lower dimensional subspace approximation for the parameters’
space. The columns of matrix U represent the influential DoFs.
Before discussing how the matrix U is used in constructing the
surrogate, it is worth mentioning that once the influential DoFs are
determined, the remaining DoFs are actually ignored, which
obviously introduces a source of error in the algorithm. Fortu-
nately, the error introduced by this truncation process can be
quantified and upper bounded using the theory presented in
Ref. [8] and used in [2,6]. To summarize this error upper bound
equation, let us assume that vector y (represents some physical
quantity) is assumed to vary along the DoFs or basis represented
by the columns of matrix UF; then if only the influential DoFs are
identified and collected in matrix U (which is a sub matrix of the
full matrix UF) then the error in representing the variations in the
physical quantity y via U can be upper bounded via the following
expression:
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This upper bound (εupper) is guaranteed with a success proba-
bility of 1e10ep [8] where p is the number of extra snapshots used
to compute that upper bound. For more information about the
theory behind this error upper bund estimation and its applica-
tions, refer to [6,8].

The goal of the surrogate here is to employ it to perform model
calibration analysis, so that the uncertainty and mean of each
parameter might be updated. The implication is that the parameter
perturbations ðDxÞ generated to determine the influential DoFs and
surrogate model are random within the interval of interest. This
contrasts with an uncertainty quantification application, where
parameter perturbations would be based upon sampling the pa-
rameters’ probability distribution functions.

An efficient goal-oriented surrogate can be constructed as
follows:
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where Dxrand is an input vector generated by randomly sampling

the parameters. Given that U2ℝnxr and Da ¼ UTDxrand2ℝr ,

b
T
1;r ¼ b
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1U2ℝr and b

T
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T
2U2ℝr , in order to determine the un-

known elements of b1;r and b2;r the model needs to be run 2r times
so that the coefficients are determined (where r is the number of
influential DoFs or the rank of matrix U which is the dimension of
the identified subspace).

The surrogate based algorithm proposed here depends on two
main points: first, identifying the important DoFs via methods of
subspace analysis (refer to Chapter 3 in [6]). Second, once the
important DoFs are determined in the form of the basis of a sub-

space, these bases can be used to form surrogate models ~f (e.g.,
polynomial or Gaussian process) which can replace the original
computationally expensive model f. The following is a summary of
the algorithm for Surrogate Based Model Calibration (SBMC): (1)
Construct the basis of the lower dimensional subspace
approximation of the parameter space (U); (2) construct the goal-
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