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a b s t r a c t

The extinction probability of a branching process (a neutron chain in a multiplying medium) is calculated
for a system randomly varying in time. The evolution of the first two moments of such a process was
calculated previously by the authors in a system randomly shifting between two states of different
multiplication properties. The same model is used here for the investigation of the extinction probability.
It is seen that the determination of the extinction probability is significantly more complicated than that
of the moments, and it can only be achieved by pure numerical methods. The numerical results indicate
that for systems fluctuating between two subcritical or two supercritical states, the extinction probability
behaves as expected, but for systems fluctuating between a supercritical and a subcritical state, there is a
crucial and unexpected deviation from the predicted behaviour. The results bear some significance not
only for neutron chains in a multiplying medium, but also for the evolution of biological populations in a
time-varying environment.
© 2017 Korean Nuclear Society, Published by Elsevier Korea LLC. This is an open access article under the

CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

One interesting characteristics of a branching process is the so-
called extinction probability, i.e. the asymptotic probability that
when time goes to infinity, the number of entities (particles) in the
system is zero.

This paper discusses some aspects of the calculation of the
extinction probability in settings other than the classical case of the
extinction of family trees with constant reproduction probabilities,
or neutron chains in a stationary multiplying medium. The setting
discussed here is the extinction probability in systems randomly
varying in time. Such systems were studied before [1e3], but only
the temporal evolution of the first two moments was investigated.
Aswill be seen here, the calculation of the extinction probability is a
considerably more complicated task, which necessitates the use of
numerical methods.

The dependence of the extinction probability on the multipli-
cation properties of the system in the traditional case, i.e. in a
system with constant parameters (constant multiplication

properties) has long been well known. For subcritical and critical
systems the extinction probability equals unity, whereas for su-
percritical systems it is less then unity. A similar behaviour was
expected also for systems with multiplication properties varying in
time, with the slight difference that the definition of criticality is
different (more involved) for such systems. A system is defined
critical in the mean if the expectation of the neutron number
converges to a constant value as time goes to infinity [1], which
requires that the time-averaged reactivity of the system be negative
[4,3]. Defining the value of this time-averaged subcritical reactivity
as the “critical reactivity”, our expectation was that the extinction
probability in time-varying systems would be unity for negative
average reactivities up to the critical reactivity, and less than unity
for time-averaged reactivities above this value. Much to our sur-
prise, the calculations indicated that the extinction probability re-
mains unity even if the average reactivity is zero, in which case the
system is already supercritical in the mean (the expectation of the
neutron number diverges asymptotically). This is a very unexpected
new result, which constitutes a crucial difference in the properties
of the extinction probability for constant and temporally fluctu-
ating systems, respectively. This result has a significance also for
branching processes other than neutron multiplication, such as the
population dynamics of biological systems in a time-varying
environment.
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2. Theory

Ever since the classic work of Galton and Watson on the
extinction of family trees [5], the extinction probability of a
branching process, started by one entity (individual/particle), has
always been derived from a backward type master equation. One
can write down a backward master equation for the generating
function g(z, t) of the probability distribution p(n, t),

gðz; tÞ ¼
X∞
n¼0

znpðn; tÞ (1)

of having n particles in the system at time t, given that at t¼ 0 there
was one neutron in the system as [3]

vgðz; tÞ
vt

¼ Qfq½gðz; tÞ� � gðz; tÞg (2)

with the initial condition

gðz;0Þ ¼ z: (3)

Here, Q is the intensity of the reaction, and q(z) is the generating
function of the probability distribution f(n) of having n particles
from a reaction, i.e.

qðzÞ ¼
X∞
n¼0

znf ðnÞ (4)

From this, it is immediately possible to obtain an equation for
the probability p(0, t) ≡ p0(t) of extinction until time t, since
p0(t) ¼ g(0, t). The extinction probability

p0 ¼ lim
t/∞

p0ðtÞ

is obtained from (2) by assuming dp0(t)/dt ¼ 0 when t/∞, as the
root of the equation

qðp0Þ ¼ p0 (5)

Actually, the above equation can be derived directly from a
backward-type reasoning, considering the possible fate (¼reaction)
of the first individual (particle). This reasoning was given by the
Dane Agner Krarup Erlang, a member of the famous Krarup family
by his mother, which was about to become extinct. He published
the formulation of the problem in the Danish journal Matematisk
Tidsskrift in 1929 [6]. The reasoning goes as follows. The extinction
probability p0 is equal to the sum of the probabilities of the
mutually exclusive events that the first particle either will not have
any secondaries, with probability f(0), or will have one descendant,
with probability f(1), which will have to die out (with probability
p0), or will have two descendants (probabilityf(2)) which both will
have to die out (probability p20) etc. That is,

p0 ¼ f ð0Þ þ f ð1Þp0 þ f ð2Þp20 þ… ¼ qðp0Þ (6)

More generally, one can also derive a similar backward type
equation for the number distribution of the total number of neu-
trons p(n) generated in the system, due to one starting neutron as

pðnÞ ¼
X∞
k¼0

f ðkÞ
Y

n1þn2þ…nk¼n
pðn1Þpðn2Þ…pðnkÞ (7)

This yields for the generating function the equation

gðzÞ ¼ q½gðzÞ� (8)

from which Eq. (6) is immediately recovered by substituting z ¼ 0.
Although in the above derivation time does not appear explic-

itly, it is clear that the equation is of a backward type. This is
because the construction of the equation is based on the summing
up of the probabilities of the mutually exclusive events that can
happen with the starting particle on its first collision (the multi-
plication of the first entity/individual in the family chain). A for-
ward equation would correspond to the summing up of the
probabilities of the events of the particle(s) on their last collisions
which, given the fact that all particle numbers in the system are
possible, could only be given as an infinite system of coupled
equations.

The above derivation is completely analogous with that of the
first of the so-called B€ohnel equations of nuclear safeguards [7],
which specify the probability distribution of the number of neu-
trons leaving a multiplying sample due to one starting neutron.
These are analogous to the above equations in that they do not
contain time; but also in that it is not possible to derive a forward
equation for any of the number distributions, for the reasons stated
above. As an illustration, we quote the B€ohnel equation for the
probability distribution due to one starting particle, and its gener-
ating function, respectively, as [8].

pðnÞ ¼ ð1� pÞdn;1 þ p
X∞
k¼0

f ðkÞ
Y

n1þn2þ…nk¼n
pðn1Þpðn2Þ…pðnkÞ

(9)

and

hðzÞ ¼ ð1� pÞzþ p q½hðzÞ� (10)

Here, p is the probability that the initial neutronwill have a first
collision before leaving the sample, and h(z) is the generating
function of p(n), where the usual notation was chosen for the
generating function, for easier distinction from the usual extinction
problem.

This latter equation is useful to illustrate the suitability of the
backward equation for the calculation of the whole probability
distribution in a simple recursive manner. First, the “extinction
probability” p(0) of no neutrons leaving the sample is obtained in a
form very similar to the traditional extinction equation as

pð0Þ ¼ p q½pð0Þ� (11)

This is still the same transcendental equation as for the tradi-
tional extinction probability. However, as it was shown in [8], the
higher order probabilities p(n), n�1 can be obtained by solving
linear algebraic equations, in which polynomial combinations of
the (already known) lower order moments appear. Hence, in
principle, the terms of the probability distribution p(n) can be
determined analytically to any arbitrary order of n.

It is thus seen that with the backward formalism, one can derive
an equation directly for the extinction probability (or, for that
matter, for the asymptotic number distribution of the neutrons in
the system or those leaving the system), without the need of first
deriving an equation for g(z,t) and then substitute z ¼ 0 and take
the limit t/∞.

However, for systems varying randomly in time, the backward
equation is not applicable. Themain reason, as discussed in [1e3], is
that the factorisation ansatz of the backward equation cannot be
applied, because the evolution of the chains started by neutrons
born simultaneously will not be independent (will be influenced
simultaneously by the changing properties of the material). Hence
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