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The new model of the Point Reactor Kinetics (PRK) equations developed based on the Telegraph
approximation of the neutron transport equation, is solved for several cases of time varying Reactivities
insertions and Temperature feedback while comparing it to that of the diffusion PRK model in an infinite
Thermal Homogenous Nuclear Reactor. Diffusion PRK is based on the Neutron Diffusion Equation which
is a parabolic differential equation and hence it assumes an infinite velocity of propagation, while
neutrons propagate with a finite velocity. By the introduction of the hyperbolic type Telegraph equation
which is a more accurate representation of the neutron transport than the diffusion equation and in
which neutrons propagate with a finite velocity, one could overcome this paradox that contradicts
causality. The new model introduces a new parameter called the relaxation time (7), which is not present
in the diffusion approximation, and affects the neutron density calculations. Both Ramp insertions of
reactivity and Sinusoidal insertions of reactivity were studied, as well as the effect of The Adiabatic
Temperature feedback. The general phenomena in the solution of the new model is a Relaxation in the
time response of the solution. It is found that the Telegraph model with its extra second order time
derivative, will give observable different values than that of the diffusion even when we used small (7)
especially for the cases at which the neutron density changes rapidly.

© 2017 Elsevier Ltd. All rights reserved.

Neutron Diffusion Equation is a differential equation of a parabolic
type, and hence the neutrons described by it carry an infinite

1. Introduction

The system of the neutron point reactor kinetics (PRK) equations
is one of the most important reduced models of nuclear engi-
neering. They have been the subject of countless studies and ap-
plications to understand the neutron dynamics and its effects and
to solve it using several methods as well as expand it to nonlinear
and two energy group formulations (Nahla, 2015; Aboanber et al.,
2014; Sérgio et al., 2014; Petersen et al., 2011; Nahla and Zayed,
2010) and reflected reactors (Aboanber, 2009; Aboanber and El
Mhlawy, 2009). However, every PRK study was based on the
neutron diffusion equation, which is considered as the correct first
order approximation of the neutron transport equation. The
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propagation velocity which in turns contradict causality principle.
This can be found in details in several publications, for e.g.
Weinberg and Noderer (1951), Weinberg and Wigner (1958),
Meghreblian and Holmes (1960) and Beckurts and Wirtz (1964).
It is also found in several recent publications, for e.g. Altahhan et al.
(2016), Espinosa-Paredes and Polo-Labarrios, (2012), Heizler
(2010), Olson et al. (2000), Das (1998) and Masoliver and Weiss
(1994).

Another approximation to the time dependent neutron trans-
port equation has been considered where it overcomes this infinite
velocity effect. This approximation is identified as the neutron
telegrapher's equation, the neutron telegraph equation or the
neutron telegraphist's equation (Weinberg and Noderer, 1951;
Weinberg and Wigner, 1958; Meghreblian and Holmes, 1960;
Beckurts and Wirtz, 1964; Altahhan et al., 2016), and its deriva-
tion is based on the neutron transport equation and is presented in
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references Weinberg and Noderer (1951), Meghreblian and Holmes
(1960) and Beckurts and Wirtz (1964). Starting from the mono-
energetic transport equation in the flux form and using the Py
approximation method, the P; approximation of the neutron
Transport Equation can be attained and is given by a system of two
coupled partial differential equations:
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Here J( T, t) is the neutron current density vector and it depends
on both the position vector 7 and the time t, ¢( T, t) is the neutron
flux, v is the neutron speed, = is the transport macroscopic cross
section, =4 is the macroscopic absorption cross-section and S(T, t)
is the source term. The spatial and temporal dependences will be
omitted but should hold unless stated otherwise. When neglecting
the derivative of the neutron current with respect to time
(8J(T ,t)/at), the resulting partial differential equation after com-
bination is the diffusion equation. viz. Equation (2):
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where D is the diffusion coefficient. On the other hand if the
neglected term is retained, thus retaining the full form of the P;
approximation, the neutron telegraph equation is obtained when
combining the above system of two equations to a single one. That
is, the neutron telegraph equation is the first order approximation
of the Py approximation of the transport equation, viz. Equation

(3):
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Considering that the above result was obtained directly from the
transport equation (Weinberg and Noderer, 1951; Meghreblian and
Holmes, 1960; Beckurts and Wirtz, 1964), we expect Eq. (3) to be a
more accurate statement of the time dependent problem when
using the P; approximation to the transport equation. And hence,
for a first order approximation, the Telegraph equation with its
additional derivatives terms and variables, is a more accurate rep-
resentation of the neutron Transport than the diffusion equation,
and evidently the diffusion theory implies an additional assump-
tion of (3J(T ,t)/dt) = 0 which have resulted in the omission of the
additional terms in Eq. (3). Since the neutron current density gives
an indication of the flow of neutrons from one point to another in
the same direction inside a medium, then neglecting its derivative
with respect to time is equivalent to assuming that the neutrons
instantaneously flow from a point to another, without taking into
account the time required physically for the flow.

According to several authors (Weinberg and Noderer, 1951;
Weinberg and Wigner, 1958; Meghreblian and Holmes, 1960;
Beckurts and Wirtz, 1964; Altahhan et al., 2016; Espinosa-Paredes
and Polo-Labarrios, 2012; Heizler, 2010; Olson et al., 2000), The
neutrons propagation speed is finite and equal to v/+/3 in the
telegraph equation. This is a consequence of the approximate
character of the angular distribution of the P; approximation
(Weinberg and Noderer, 1951; Weinberg and Wigner, 1958). But, it
is better than the infinite propagation velocity of the neutron
diffusion equation. Recently, a few revisions were made to this
value prompting a changed Telegraph equation, for instance
(Espinosa-Paredes and Polo-Labarrios, 2012; Heizler, 2010; Olson
et al,, 2000). It must be emphasized that the analysis done in

(Espinosa-Paredes and Polo-Labarrios, 2012; Heizler, 2010; Olson
et al., 2000), does not include a model of PRK.

Several models of Point Reactor Kinetics are found in the liter-
ature that is seemingly based on the P; approximation (Espinosa-
Paredes et al,, 2011; Nunes et al., 2015; Niederauer, 1967). They
are different from our model in that they are either a fractional
Telegraph equation model (G. Espinosa-Paredes et al. (2011), or the
methodology they used to arrive at their model is totally different
from the telegraph equation as well as the results following their
analysis, according to the authors in Nunes et al. (2015), or is
consistent with our model, although with different variables
(Niederauer (1967). It is to be noted that the model in (Espinosa-
Paredes et al, 2011) has been the inspiration of our Non-
Fractional order telegraph equation model found in Altahhan
et al. (2016) and in this paper. Very Detailed comparison between
those different models is found in (Altahhan et al., 2016).

In this paper, the telegraph PRK model of (Altahhan et al., 2016)
has been solved for different cases of time varying insertions of
reactivity and Temperature feedback, and the solutions compared
to those of the diffusion model for the same insertions for an
infinite thermal homogenous nuclear reactor. In Section 2, a brief
introduction of the model is found as well as an explanation is
presented regarding the numerical method adopted to solve the
new model. While in section 3 we solve the new model for a ramp
insertion of reactivity case. Section 4 holds the results of the si-
nusoidal insertion of reactivity. In section 5 the case of a Temper-
ature feedback is reported, while in section 6 a concluding
discussion is given regarding the results.

2. Mathematical model and the method of solution

Altahhan et al. (2016) formulated a point reactor kinetics model
in light of the neutron Telegraph Equation, called the (TPRK) model,
and solved it for a step insertion of reactivity as well as solving
analytically the model for different known approximations in
Reactor kinetics field like the prompt jump approximation and the
constant delayed neutrons approximation, while also deriving the
matrix form of the model necessarily for numerical solutions of the
model for time varying reactivities insertions and temperature
feedback. The PRK equations for an infinite homogenous reactor
and m delayed neutrons groups with no external source based on
the telegraph equation are given by Altahhan et al. (2016):
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With initial conditions given by:
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where n(t) is the neutron density that depends on time t, 7 is the
relaxation time of an infinite reactor, p(t) is the reactivity as a
function of time, § is the total delayed neutron fraction of the fission
neutrons while §; is the delayed neutron fraction of the fission
neutrons for the i" delayed neutrons precursor group, A is the
prompt neutrons mean generation time, m is the number of
delayed neutrons precursor groups, 4; is the delayed neutron decay
constant for the i delayed neutrons precursor group and Ci(t) is
the neutrons precursor concentration in the i group. The
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