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a b s t r a c t

The Total Monte Carlo methodology (TMC) for nuclear data (ND) uncertainty propagation has been
subject to some critique because the nuclear reaction parameters are sampled from distributions which
have not been rigorously determined from experimental data. In this study, it is thoroughly explained
how TMC and Unified Monte Carlo-B (UMC-B) are combined to include experimental data in TMC.
Random ND files are weighted with likelihood function values computed by comparing the ND files to
experimental data, using experimental covariance matrices generated from information in the experi-
mental database EXFOR and a set of simple rules. A proof that such weights give a consistent imple-
mentation of Bayes' theorem is provided. The impact of the weights is mainly studied for a set of integral
systems/applications, e.g., a set of shielding fuel assemblies which shall prevent aging of the pressure
vessels of the Swedish nuclear reactors Ringhals 3 and 4.

In this implementation, the impact from the weighting is small for many of the applications. In some
cases, this can be explained by the fact that the distributions used as priors are too narrow to be valid as
such. Another possible explanation is that the integral systems are highly sensitive to resonance pa-
rameters, which effectively are not treated in this work. In other cases, only a very small number of files
get significantly large weights, i.e., the region of interest is poorly resolved. This convergence issue can be
due to the parameter distributions used as priors or model defects, for example.

Further, some parameters used in the rules for the EXFOR interpretation have been varied. The
observed impact from varying one parameter at a time is not very strong. This can partially be due to the
general insensitivity to the weights seen for many applications, and there can be strong interaction ef-
fects. The automatic treatment of outliers has a quite large impact, however.

To approach more justified ND uncertainties, the rules for the EXFOR interpretation shall be further
discussed and developed, in particular the rules for rejecting outliers, and random ND files that are
intended to describe prior distributions shall be generated. Further, model defects need to be treated.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction and Total Monte Carlo

Nuclear data (ND) underpins all nuclear science and technology
(Forrest, 2014), and its accuracy is hence paramount. As for any

scientific quantity, ND (and results derived from it) should be
presented with both best estimates and with uncertainties.

Total Monte Carlo (TMC, Koning and Rochman, 2008) is an ND
uncertainty propagation method based on the idea of sampling
nuclear reaction model parameters to a nuclear reaction code,
typically the TALYS code system T6 (Koning and Rochman, 2012),
which complements TALYS (Koning et al, 2013) results with, e.g.,
resonance data.

An overview of the methodology is seen in Fig. 1. By feeding T6

* Corresponding author. Dpt. of Phys. and Astronomy, Box 516, 751 20 Uppsala,
Sweden.

E-mail address: petter.helgesson@physics.uu.se (P. Helgesson).

Contents lists available at ScienceDirect

Progress in Nuclear Energy

journal homepage: www.elsevier .com/locate/pnucene

http://dx.doi.org/10.1016/j.pnucene.2016.11.006
0149-1970/© 2016 Elsevier Ltd. All rights reserved.

Progress in Nuclear Energy 96 (2017) 76e96

mailto:petter.helgesson@physics.uu.se
http://crossmark.crossref.org/dialog/?doi=10.1016/j.pnucene.2016.11.006&domain=pdf
www.sciencedirect.com/science/journal/01491970
http://www.elsevier.com/locate/pnucene
http://dx.doi.org/10.1016/j.pnucene.2016.11.006
http://dx.doi.org/10.1016/j.pnucene.2016.11.006
http://dx.doi.org/10.1016/j.pnucene.2016.11.006


with n randomly sampled sets of parameters, n ENDF (Trkov et al.,
2011) libraries with ND are produced, referred to as random files in
this text. By using each such random file in a simulation of a nuclear
system of interest, n results for all output quantities are obtained.
The output quantities could, e.g., be grouped macroscopic cross
sections, power distribution, keff, decay heat, dose rate, inventories,
etc., to mention a few possible examples. If the ND which is varied
has any relevance to the system, the results will have a spread
because of the varying ND. Using statistical inference one can then
estimate the propagated ND uncertainty in any of the output

quantities.
TMC has been applied to numerous different cases, ranging from

shielding models (Sj€ostrand et al., 2014a), thoroughly studied pin
cells (Helgesson et al., 2014) and a wide range of criticality safety
benchmarks (Rochman et al., 2009) to full core neutronics simu-
lations (van der Marck and Rochman, 1051) and even to models
including thermo-hydraulics (Cabellos et al, 2013) and transients
(da Cruz et al., 2014).

The methodology has a number of advantages compared to the
conventional use of covariance matrices and sensitivities to prop-
agate ND uncertainties; for example, non-Gaussian output distri-
butions can be observed (examples of which can be seen in Koning
and Rochman (2008) and Alhassan et al. (2015), it allows for non-
linearities and also for more complete input distributions than
simply central values and covariances. Another important advan-
tage is the transparency compared to how the covariance data in
the ND evaluations are produced. Finally, there is no need to pro-
cess covariance matrices and to keep track of them in all codes in
the entire chain of simulations.

List of symbols

:¼ Defined by, 5
〈$〉 Expected value, 5
〈$〉g Expected value with respect to PDF g, 5
CE “Experimental covariance matrix”4, 6
CEðjÞ Covariance matrix corresponding to j'th experiment, 7
c2ðjÞ;central c

2 for comparison of j'th experiment to tðjÞ, 7

c2k Generalized c2 for k'th random file (parameter set p(k)),
4

CtðjÞ Covariance matrix inherent in random files for j'th
experiment, 7

DE0,i Uncertainty in E0,i, 6
DE0i “Energy spectrum width”, 6
dij Kronecker delta (1 if isj, 0 otherwise), 7
E0,i Mean neutron energy of experimental point, 6
ε[ Random variable describing normalized error due to

[’th systematic contribution, 7
f0(p) Prior PDF for p, 4
Fx2ðmjÞ Distribution function for c2-distributed random

variable with mj degrees of freedom, 7
f(p) PDF for p, 4
f ðpjxÞ PDF for p given x, 4
fW Probability density for generic randomvariableW (ifW

is a random variable), 6
fXðxjpÞ PDF for X given p evaluated at x, 5
keff Neutron multiplication factor, 3
k∞ keff neglecting neutron leakage, 10
L(p(k);x) Likelihood function for p(k) under x, 4
M # of experiments, 7
m # of experimental points, 4
M(j) Random vector describing the true values

corresponding to X(j), 7
m(j) Observation of M(j), 7
mj # of experimental points in j'th experiment, 7
N # model parameters, 4
n # random ND files, 3
n # systematic contributions, 6
p Vector with model parameters, 4
Pj Estimated p-value for j'th experiment, 7
pj Model parameter (element of p), 4

Ptol Tolerance used for rejection of outliers, 7
q Generic integral quantity, 4dqjðpÞ Estimate of j'th moment of q given x, 5
s2i Random variance of Xi, 6
s2observedðqÞ Estimate of total variance of q, 5
s2statðqÞ Estimated variance in q due to statistics of Monte Carlo

code, 5
sfully correlated Added uncertainty, fully correlated for all

experimental points for the same reaction channel
(and nuclide), 6, 9

si[ Uncertainty in Xi due to [’th systematic contribution, 6
sND(q) Estimated standard deviation due to ND uncertainty, 5
sstat,extra abs Added absolute random uncertainty, 6, 11
sstat,extra rel to s Added random uncertainty, relative to random

uncertainty, 6, 11
sstat,min Minimum random uncertainty, 6, 11
ssys,extra abs Added absolute systematic uncertainty, 6, 11
ssys,extra rel Added relative systematic uncertainty, 6, 11
ssys,min Minimum systematic uncertainty, 6, 11
2ðE0Þ Theoretical cross section at E

0
, 6

ð$ÞT Transpose, 4
t
ðkÞ
i Value in k'th random file corresponding to xi (element

of t(k)), 4
tðjÞ Mean value of values in random files corresponding to

x(j), 7
t Vector with values in k'th random file corresponding to

x, 4
Vð$Þ Variance, 6
VDEðtðkÞi Þ Variance in t

ðkÞ
i due to energy resolution, 6

wk Weight for k'th random file, 5
X Random vector describing the experimental points, 4
x Vector with observed experimental values, 4
Xi Random variable describing i'th experimental point, 7
xi i'th experimental value (element of x), 4
x(j) Vector with experimental results for j'th experiment

(sub-vector of x), 7
XðjÞ
���ðMðjÞ ¼ mðjÞÞ X(j) given that M(j) ¼ m(j), 7

Yi Random variable describing expected value and
random uncertainty of i'th experimental point, 7

Fig. 1. An overview of the TMC methodology.
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