
A fast general slew constrained minimum cost buffering algorithm$

Shiyan Hu a,�, Jiang Hu b

a Department of Electrical and Computer Engineering, Michigan Technological University, Houghton, MI 49931, USA
b Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX 77843, USA

a r t i c l e i n f o

Article history:

Received 22 December 2008

Accepted 10 August 2009

Keywords:

Buffer insertion

Slew constraint

Non-fixed input slew

Interconnect optimization

Physical design

a b s t r a c t

As VLSI technology moves to the nanoscale regime, ultra-fast slew buffering techniques considering

buffer cost minimization are highly desirable. The existing technique proposed in [S. Hu, C. Alpert, J. Hu,

S. Karandikar, Z. Li, W. Shi, C.-N. Sze, Fast algorithms for slew constrained minimum cost buffering, IEEE

Transactions on Computer-Aided Design of Integrated Circuits and Systems 26 (11) (2007) 2009–2022]

is able to efficiently perform buffer insertion with a simplified assumption on buffer input slew.

However, when handling more general cases without input slew assumptions, it becomes slow despite

the significant buffer savings. In this paper, a fast buffering technique is proposed to handle the general

slew buffering problem. Instead of building solutions from scratch, the new technique efficiently

optimizes buffering solutions obtained with the fixed input slew assumption. Experiments on industrial

nets demonstrate that our algorithm is highly efficient. Compared to the commonly used van Ginneken

style buffering, up to 49� speed up is obtained and often 10% buffer area is saved. Compared to the

algorithm without input slew assumption proposed in [S. Hu, C. Alpert, J. Hu, S. Karandikar, Z. Li, W. Shi,

C.-N. Sze, Fast algorithms for slew constrained minimum cost buffering, IEEE Transactions on Computer-

Aided Design of Integrated Circuits and Systems 26 (11) (2007) 2009–2022], up to 37� speedup can be

obtained with slight sacrifice in solution quality.

& 2009 Elsevier Ltd. All rights reserved.

1. Introduction

As VLSI technology moves to the nanoscale regime, devices
scale much faster than interconnects. As a highly effective
interconnect optimization technique, buffer insertion is exten-
sively studied [3–7]. It has been widely deployed in industry as
demonstrated in [8] which shows that about 25% gates are buffers
in recent IBM ASIC designs. On the other hand, interconnect
resistivity may lead to the significant degradation on signal
integrity. This issue severely aggravates with advancing technol-
ogies. As such, buffers need to be inserted also for meeting slew
constraints [2].

In practice, slew constraint is significantly more prevalent than
timing constraint [2]. Once nets are buffered for satisfying slew
constraints, most of them will automatically satisfy timing
constraints. In fact, it is documented in [8] that in IBM ASIC
designs, for about 95% nets, buffering based on slew is sufficient to
meet their timing constraints, while only about 5% nets need to be
re-buffered for timing optimization.

This suggests a better way of using buffer insertion techniques
in the physical synthesis flow [8]. Suppose that we are to buffer
millions of nets. They are first buffered using slew driven
buffering techniques. After performing timing analysis on the
resulting nets, we find that about 5% nets violate timing
constraints. Only these timing critical nets need to be ripped up
and re-buffered by timing driven buffering techniques [2].

The main benefit from this new physical synthesis methodol-
ogy is the huge gain in efficiency since slew buffering can be
performed very efficiently. It is demonstrated in [2] that a slew
driven buffering algorithm can run up to 88� faster than the
timing driven buffering algorithm. For example, one can buffer
1000 industrial nets in only 6.2 s by the minimum cost slew
buffering algorithm, while the minimum cost timing buffering
algorithm needs 548.9 s. Note that minimum cost buffering is
important since excessive buffers may cause many design
issues such as high power consumption. To keep the overall
design quality, it is crucial to minimize the usage of buffering
resources [2].

This fast slew buffering algorithm proposed in [2] needs an
important assumption, namely, the input slew to each buffer is
assumed to be fixed at a conservative upper bound. With this
input slew assumption, slew buffering can be efficiently per-
formed under the dynamic programming framework. Certainly,
improvement in buffer area is desired if this assumption is

ARTICLE IN PRESS

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/mejo

Microelectronics Journal

0026-2692/$ - see front matter & 2009 Elsevier Ltd. All rights reserved.

doi:10.1016/j.mejo.2009.08.003

$A preliminary version of the paper appeared in [1].
� Corresponding author. Tel.: +1906 487 2941; fax: +1906 487 2949.

E-mail addresses: shiyan@mtu.edu (S. Hu), jianghu@ece.tamu.edu (J. Hu).

Microelectronics Journal 40 (2009) 1482–1486

www.elsevier.com/locate/mejo
dx.doi.org/10.1016/j.mejo.2009.08.003
mailto:shiyan@mtu.edu
mailto:jianghu@ece.tamu.edu

ARTICLE IN PRESS

eliminated. As such, they [2] also propose a slew buffering
algorithm without the fixed input slew assumption. The idea is to
first discretize every possible input slew into slew bins and carry
out the fixed input slew buffering algorithm with each bin. Since
the solutions associated with a slew bin may be switched to other
slew bins, numerous solutions can be generated. Experimental
results in [2] show that although about 20% area saving can be
obtained, the algorithm is not efficient: it is even slower than
timing driven buffering in many cases. Thus, it is not very
attractive since a major reason for using slew buffering is its high
efficiency. In order to make the approach practical, it is crucial to
design a fast slew buffering algorithm for handling the non-fixed
input slew case.

This work proposes a new fast slew buffering algorithm
without input slew assumptions. In contrast to [2] which builds
slew buffering solutions from scratch, we perform optimizations
to buffering solutions obtained with the fixed input slew
assumption. For this purpose, a heuristic is proposed to improve
buffer usage under the slew constraint and it runs very fast.
Together with the fact that slew buffering with fixed slew
assumption can be efficiently computed, the whole approach
runs very fast.

Our experimental results demonstrate the effectiveness and
the efficiency of the new algorithm. Our algorithm runs up to 49�
faster than the timing buffering algorithm with about 10% buffer
area saving. Compared to the slew buffering algorithm without
input assumptions proposed in [2], up to 37� speedup is obtained.
Thus, our work makes the general slew buffering technique
practical. It is expected that the new algorithm would be widely
used in practice due to its high efficiency in both runtime and
buffer usage.

Note that there is another recent work in [9] which proposes a
low-power buffering algorithm handling both timing constraint
and slew constraint for timing critical nets. In contrast, the
purpose of this paper is to address slew buffering on non-timing
critical nets.

The rest of the paper is organized as follows: Section 2
formulates the slew buffering problem. Section 3 overviews the
slew buffering algorithm proposed in [2]. Section 4 describes the
new fast slew buffering algorithm without fixed input slew
assumption. Section 5 presents the experimental results with
analysis. A summary of work is given in Section 6.

2. Preliminaries

For completeness, we first introduce the slew problem as
formulated in [2]. In the slew buffering problem, we are given a
routing tree T ¼ ðV ; EÞ. V consists of source vertex, sinks and
internal vertices. Each sink has sink capacitance Cs. Each edge has
lumped resistance Re and lumped capacitance Ce. We are also
given a buffer library B. Each type of buffer b has a cost Wb. At
each internal vertex, some types of buffered can be inserted. A
buffering solution is defined as a buffer assignment where buffers
are inserted at some internal locations. The cost of a buffering
solution g is defined as WðgÞ ¼

P
b2gWb [2].

We are to compute a minimum cost buffering solution such
that the slew constraint is satisfied. The signal slew is the measure
of rising or falling time of switching. As in [2], 10

90 slew is used
which refers to the difference between the time signal waveform
crosses the 90% point and the time signal waveform crosses the
10% point. The slew model can be described by the following
generic example in [2]. Consider a path p from an upstream vertex
u to a downstream vertex v. Assume that a buffer b is inserted at u

and no buffer is inserted between u and v. Denote the output slew
of b by Sb;outðuÞ and the slew degradation along path p by SwðpÞ.

The slew SðvÞ at v is computed as [10,2]

SðvÞ ¼
ffi
Sb;outðuÞ

2
þ SwðpÞ

2
q

: ð1Þ

As the Elmore model for delay, the slew degradation along wire
SwðpÞ can be computed by Bakoglu’s metric [11] as

SwðpÞ ¼ ln 9 � DðpÞ; ð2Þ

where DðpÞ is the Elmore delay along p. The output slew of a
buffer, such as Sb;outðuÞ, depends on the input slew at this buffer
and its load capacitance. As in [2], the dependence is described by
a lookup table.

In [2], a fast algorithm is proposed to handle a simplified slew
buffering formulation where the input slew to each buffer is
assumed to be fixed at a conservative upper bound. This
assumption allows us to process large number of nets very
efficiently and slew constraint is satisfied. With the assumption,
the output slew of buffer b at vertex v is then given by [2]

Sb;outðvÞ ¼ Rb � CðvÞ þ Kb; ð3Þ

where CðvÞ is the downstream capacitance at v, Rb and Kb are
empirical fitting parameters. As in [2], we call Rb the slew
resistance and Kb the intrinsic slew of buffer b.

To illustrate the above concepts, we use the example in Fig. 1
where a neighboring pair of buffers b1; b2 are connected by a path
p ¼ ðvj; vkÞ. The slew rate at vk is [2]

SðvkÞ ¼

ffi
Sb1 ;outðvjÞ

2
þ SwðpÞ

2
q

; ð4Þ

where SwðpÞ refers to the slew degradation along the wire p, and
Sb1 ;outðvjÞ is obtained through a 2-D look-up table when handling
non-fixed slew buffering, while it is computed by Eq. (3) when
handling fixed input slew buffering.

The slew buffering problem is formulated in [2] as follows.
Slew constrained minimum cost buffer insertion problem: Given a

routing tree T ¼ ðV ; EÞ, possible buffer positions, and a buffer
library B, compute a buffering solution g such that the total cost
WðgÞ is minimized and the slew constraint a is satisfied.

3. Overview of [2]’s minimum cost slew buffering algorithm
assuming fixed input slew

The algorithm proposed in [2] works under the dynamic
programming framework as timing buffering [12,3]. For comple-
teness, we include the algorithm in [2] as follows.

In the algorithm, a set of candidate solutions are propagated
from the sinks toward the source. Each buffering solution g is
characterized by ðC;W ; SÞ, where C denotes the downstream
capacitance at the current node, W denotes the cost of the
solution and S is the cumulative slew degradation along wire. S is
Sw defined in Eq. (2). The solution at a sink node has C as sink
capacitance, W ¼ 0 and S ¼ 0. During solution propagation, we
will perform ‘‘add wire’’, ‘‘add buffer’’ and ‘‘merge branch’’.

‘‘Add wire’’: To propagate a solution gv from a node v to its
parent node u, a solution gu is generated at u as follows. CðguÞ ¼

CðgvÞ þ Ce;WðguÞ ¼WðgvÞ and SðguÞ ¼ SðgvÞ þ ln 9 � De where
De ¼ ReðCe=2þ CðgvÞÞ.

Fig. 1. Slew rate computation.

S. Hu, J. Hu / Microelectronics Journal 40 (2009) 1482–1486 1483

Download English Version:

https://daneshyari.com/en/article/547816

Download Persian Version:

https://daneshyari.com/article/547816

Daneshyari.com

https://daneshyari.com/en/article/547816
https://daneshyari.com/article/547816
https://daneshyari.com

