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a b s t r a c t

This paper concerns the application and solver robustness of the Newton-Krylov method in solving two-
phase flow drift-flux model problems using high-order numerical schemes. In our previous studies, the
Newton-Krylov method has been proven as a promising solver for two-phase flow drift-flux model
problems. However, these studies were limited to use first-order numerical schemes only. Moreover, the
previous approach to treating the drift-flux closure correlations was later revealed to cause deteriorated
solver convergence performance, when the mesh was highly refined, and also when higher-order nu-
merical schemes were employed. In this study, a second-order spatial discretization scheme that has
been tested with two-fluid two-phase flow model was extended to solve drift-flux model problems. In
order to improve solver robustness, and therefore efficiency, a new approach was proposed to treating
the mean drift velocity of the gas phase as a primary nonlinear variable to the equation system. With this
new approach, significant improvement in solver robustness was achieved. With highly refined mesh,
the proposed treatment along with the Newton-Krylov solver were extensively tested with two-phase
flow problems that cover a wide range of thermal-hydraulics conditions. Satisfactory convergence per-
formances were observed for all test cases. Numerical verification was then performed in the form of
mesh convergence studies, from which expected orders of accuracy were obtained for both the first-
order and the second-order spatial discretization schemes. At last, the drift-flux model, along with
numerical methods presented, were validated with three sets of flow boiling experiments that cover
different flow channel geometries (round tube, rectangular tube, and rod bundle), and a wide range of
test conditions (pressure, mass flux, wall heat flux, inlet subcooling and outlet void fraction).

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Two-phase flow is an important phenomenon that is widely
seen in many engineering applications. In nuclear reactor thermal-
hydraulics, accurate modeling and simulation of two-phase flows
are critical to the design and safety analysis of nuclear reactors. In
the past, many two-phase flow models have been developed, such
as homogeneous equilibrium model, drift-flux model, and two-
fluid model. Many existing reactor system analysis codes, e.g.,
RELAP5 (USNRC, 2001) and TRACE (USNRC, 2010), employ the two-
fluid two-phase flow model that treats the two phases separately
with the interfacial interactions considered by closure correlations.
Code implementation and numerical solving for the two-fluid

model could be challenging tasks. On the other hand, the drift-
flux model (Zuber and Findlay, 1965; Ishii, 1977; Ishii and Hibiki,
2011) is formulated to treat the two phases as a mixture.
Although the drift-flux model has limitations in certain applica-
tions, they are still widely used in many applications due to their
simplicity and applicability to a wide range of two-phase flow
problems. For example, the RETRAN-3D (EPRI, 1998) code employs
the drift-flux model and has many applications in reactor transient
analyses. The drift-flux model has also been widely seen in many
other applications, e.g., subchannel analysis of reactor fuel bundles
(Khan and Yi, 1985; Hashemi-Tilehnoee and Rahgoshay, 2013a,b;
Chung et al., 2012, 2013; Hajizadeh et al., 2017b), BWR core simu-
lators (Galloway, 2010), two-phase flow instabilities analyses
(Nayak, 2007;Wang et al., 2011), two-phase CFD code development
(Tentner et al., 2015), and two-phase flow analysis inwellbores (Shi
et al., 2005).

The difficulty of numerically solving the drift-flux two-phase
flow model comes from two aspects: the first one being the
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intrinsic nonlinearity presented in almost any two-phase flow
models; and the second one being the strong constraint casted by
the drift-flux closure correlation. Additional difficulties come from
the complex, and normally discrete, two-phase flow closure cor-
relations in describing wall heat transfer, boiling and condensa-
tion, and etc. These discrete closure correlations could negatively
impact the solver robustness. Traditionally, numerical solving of
the drift-flux model relied on iterative methods that are based on
operator-splitting type of algorithms (Galloway, 2010; Talebi et al.,
2012). These types of iterative methods sometimes suffer from
unstable (oscillatory) convergence behavior (Hajizadeh et al.,
2017a). In recent years, the Jacobian-free Newton-Krylov (JFNK)
method has gained many successes in solving nonlinear systems
in different disciplines (Knoll and Keyes, 2004). In two-phase flow
simulations, Mousseau has done the pioneering work that solves
two-fluid two-phase flow problems using the JFNK method
(Mousseau, 2004, 2005). Following his pioneering work, Zou and
coworkers have greatly extended its applications in solving flow
problems interested in reactor thermal-hydraulics, including both
single-phase natural circulation problem (Zou et al., 2017a) and
two-phase flow problems (Zou et al., 2015, 2016a,b,c), with
consideration of high-order numerical methods (Zou et al., 2015,
2016c) and, more importantly, employing realistic two-phase
flow closure correlations (Zou et al., 2016a,b,c). Challenges in
numerically treating the phase appearance and disappearance
phenomenon in the two-fluid two-phase flow model have also
been studied in Zou et al. (2016d,e). Among these papers, two
were devoted to study the Newton-Krylov method in the appli-
cation of solving drift-flux two-phase flow problems (Zou et al.,
2016a,b). In Zou et al. (2016a), the Newton-Krylov method was
successfully applied to solve the drift-flux model using Ishii's
drift-flux closure correlations. This work was later improved in
Zou et al. (2016b) to address several issues revealed in Zou et al.
(2016a), e.g., unphysical jump in numerical results due to
discrete closure correlations. It is noted that, first-order numerical
schemes were used in both studies.

This study is an extension to the two papers discussed above.
There are twomain objectives in this study. The first objective is to
introduce second-order numerical schemes in solving the drift-
flux two-phase flow problems. Although second-order numeri-
cal schemes have been successfully applied to solve both single-
phase flow (Zou et al., 2017a) and two-fluid two-phase flow
problems (Zou et al., 2015, 2016c), it is not so straightforward to
extend them to the drift-flux model. This is due to the additional
drift-flux related terms appearing in the drift-flux model. The
second objective is to improve the robustness and thus efficiency
of the Newton-Krylov method to solve the drift-flux two-phase
flow problems. Due to the circular dependency (a concept bor-
rowed from software engineering, and more discussions on this
later) between closure correlation parameters and state variables
in the drift-flux model, a nested iteration process was required
inside each Newton's nonlinear iteration (Zou et al., 2016b). Such
an approach caused unsatisfactory solver convergence perfor-
mance, especially when it was experimented with high-order
numerical methods and/or meshes were refined, although such
an issue could normally be resolved by, albeit undesirably,
reducing the time step size. This paper is organized as the
following: Section 2 provides a detailed description on the drift-
flux two-phase flow model and the related closure correlations.
Section 3 is focused on numerical methods, including details on
the second-order spatial discretization scheme and the Newton-
Krylov method. Rigorous numerical verification in the form of
mesh refinement and validation with experimental data are pro-
vided in Section 4. Further discussions and conclusions are pre-
sented in Section 5.

2. Model description

2.1. One-dimensional four-equation drift-flux model

The one-dimensional four-equation drift-flux two-phase flow
model includes a two-phase mixture mass equation, a mass equa-
tion for the dispersed gas phase, and a momentum and an energy
equation for the two-phase mixture,
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In these equations, subscripts m, g, and f denote the two-phase
mixture, gas phase, and liquid phase, respectively. Vgj is the mean
drift velocity of the gas phase. Following our previous papers (Zou
et al., 2016a,b), this set of equations is re-derived from their original
form (Ishii, 1977; Hibiki and Ishii, 2003; Ishii and Hibiki, 2011) for
the convenience of numerical implementation. In their current
forms, the mixture momentum equation was re-derived in the
primitive form, and the mixture energy equation was re-derived in
term of the internal energy. In addition, the stress tensor and
covariance terms in the original equations were ignored.

The four primary variables to be solved from this set of four
equations are p, a, vm, and T, which are pressure, void fraction,
mixture velocity, and temperature, respectively. Similar to our
previous approach, there is always one of the two phases assumed
to be at the saturation condition. For example, during nucleate
boiling, the vapor phase is assumed to be at the saturation condi-
tion, while the liquid phase can be in the subcooled condition, such
that, Tf ¼ T and Tg ¼ TsatðpÞ. Other dependent variables are calcu-
lated with water/steam properties correlations, e.g.,
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or by their definitions, e.g.,

rm ¼ arg þ ð1� aÞrf
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An additional correlation (Talebi et al., 2012; Zou et al., 2016a) is
provided to calculate the mean drift velocity of the gas phase, Vgj,
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in which, C0 is the distribution parameter, and hhVgjii is the
weightedmean drift velocity of the gas phase, both of which will be
determined with closure (constitutive) models. The two phasic
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