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A B S T R A C T

Lumped parameter tank models have gained renewed interest in recent years as an alternative tool for geo-
thermal reservoir analysis and production planning. The models can be structured in various ways regarding the
number of tanks, connections between the tanks and the parameters representing the physical properties of the
geothermal system. It usually requires a time consuming and difficult process of trials and errors to manually
decide the optimal configuration of a tank model. Inspired by recent development in the use of machine learning
methods, we propose a method for automatically generating accurate and computationally feasible generalized
tank models for isothermal, single phase, reservoirs. This is an extension of earlier work on complexity reduction
of generalized tank models (Li et al., 2016). Here, a recursive “switch-back” method is constructed to maximize
prediction accuracy of the model. It is also shown how the K-means clustering algorithm can be used to ag-
gregate production wells in generalized tank models. One synthetic example and one field application from t
Reykir geothermal fields in Iceland are used to illustrate the effectiveness of these methods.

1. Introduction

Geothermal energy is an attractive source for heating and electrical
power production by extracting heat from the earth (Erdogdu, 2009). It
is a renewable energy resource that, if carefully managed, can be har-
nessed in a sustainable manner (Axelsson, 2010; SigurÐardottir, 2013;
Shortall et al., 2015). To do this it is of vital importance to understand
how drawdown in the geothermal reservoir will change under a certain
production rate.

One way to understand the behavior of a geothermal field is to
describe it as an abstract system shown in Fig. 1, that has inputs and
outputs that correspond to production and drawdown respectively. The
structure and parameters of the model describing the geothermal field
are then chosen so that the calculated response fits the experimental
data. Once a model structure has been chosen, a series of measured data
(the training data) is used to find the parameters of the model. Once the
model parameters have been found, a second data series (the validation
data), independent of the training data, is fed into the model to inspect
the predictive capability of the model. If the user is satisfied with the
outcome of validation, the model may be used to predict the system

response for specific production profiles. Various models have been
introduced to represent the real geothermal system such that the errors
in fitting the calculated drawdown to both the training data and vali-
dation data are within an acceptable range. Generally, a complex model
(a model with more parameters) is more likely to lead to a better fit to
the training error, while it is not necessary that it will generate a better
fit to the validation data, since over-fitting may occur when information
is insufficient compared with the complexity of the model (Bishop,
2006; Li et al., 2016).

A common approach to model a geothermal system is to use fully
discretized numerical methods in which the geothermal system is di-
vided into tens of thousands of consecutive cells and to introduce mass
and energy balance equations to simulate the behavior of the system
(Wu and Guan, 2009). Although exhaustive in its nature, these detailed
numerical models lead to considerable computational cost. Further-
more, in practical applications, it is always the case that only limited
information about the system being modelled is available, which is
certainly a disadvantage for using this kind of model, since a successful
numerical model is heavily dependent on sufficient amount of data.
(Türeyen et al., 2014)
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Lumped parameter models introduced by Grant et al. (2011),
Axelsson (1989), Alkan and Satman (1990), in which the reservoir is
represented by tanks and average properties are assigned to these tanks,
have gained increasing interest in reservoir modeling (Axelsson 1991;
Hjartarson et al., 2002; Thorvaldsson et al., 2010; SigurÐardottir et al.,
2010, 2015). Compared with their numerical counterparts, lumped
parameter models are much simpler, thus require less computation time
for parameter estimation (Türeyen and Akyapı, 2011). Studies show
that based on long data sets, this alternative method is quite reliable for
liquid dominated geothermal systems and is able to generate a rea-
sonable prediction of drawdown as a function of production (Axelsson
et al., 2005). Tank models that only take mass conservation into con-
sideration are referred to as isothermal lumped parameter models, while
models that consider both mass and energy conservation are referred to
as non-isothermal lumped parameter models (Onur et al., 2008). With the
isothermal flow assumption, the changes in temperature with time
cannot be accounted for, while using non-isothermal lumped parameter
models, both the drawdown and temperature response can be

modelled. Isothermal lumped parameter models are the topic of this
work. Fig. 2 shows a typical isothermal lumped parameter system made
up of two tanks and an external recharge source. Tank number 1 re-
presents the wells in the geothermal field, the mass flow from this tank
is the sum of production from all wells in the field. The drawdown in
tank 1 is typically measured from the fluid level in an observation well.
Tank number 2 represents the larger field. Each tank has a character-
istic capacity, K, which is a measure of how drawdown in the tank
changes as a function of net mass flow from it. Between the tanks are
links that allow fluid to flow from the higher pressure tank to the lower
pressure tank. The links are characterized by a conductance, σ, that is a
constant of proportionality between the difference in drawdown of
linked tanks and the flow through the link between them. The model in
Fig. 2 is an open system, in the sense that it is connected to an external
recharge source of infinite capacity. A system that is not connected to
an external recharge source is closed.

In lumped parameter models, the parameters are determined in a
process called history matching, in which an appropriate optimization
method is applied to minimize the least-squares error between mea-
sured and calculated data series. But before history matching, a proper
lumped parameter model has to be chosen. Six standard models have
been used in previous works. They are the one tank closed and open
models, the two tank closed and open models and the three tank closed
and open models (Sarak et al., 2005). In these models the production
wells are typically amalgamated into a single tank, while the other
tanks represent the area surrounding the wells. Deciding which model
to use remains an art in some sense. Tureyen et al. (2014) presented a
simple procedure based on the inspection of the RMS and confidence
intervals of the estimated parameters for a chosen lumped parameter
model to identify the appropriate model among the set of lumped
parameter tank models. Statistical confidence intervals prove to be
useful for a quantitative evaluation of model discrimination and as-
sessment of uncertainty in the estimated parameters. However, in order
to identify the appropriate model, the RMS value and confidence in-
tervals have to be calculated for each model in the model set. This may
turn out to be a computationally expensive process. In addition, it may
also be time consuming to check whether modeling the reservoir as a

Nomenclature

Greek letters

μk The center for each cluster

Subscripts

∞ The infinite recharge source
i The i-th tank

Superscripts

swch( ) The model after using switch-back method
m( ) The best model among one iteration
(0) The model at initiating stage
0 The initial estimate in the corresponding model
K Storage capacity(ms2)
σ Conductance between tanks(ms)
ρf Density of the geothermal fluid(kg/m3)
g Gravitational acceleration(m/s2)
ṁ the rate of production(kg/s
T The total number of tanks
N The number of production tanks
k The number of observation tanks
→
h Vector of drawdown

⎯ →⎯⎯
σT Vector of conductance between tanks and infinite recharge

resource
⎯ →⎯⎯
mT Vector of production rate

→
θ Vector of parameters
⎯→⎯
he Vector of measured data
K Matrix of storage capacity
S Matrix of conductance
t Time(s)
Δτ The time interval between the two data points(s)
T The transform between input and output
ℳ The lumped parameter model chosen
M The number of data points of a data set
xm The location vector for each well
rmk The binary indicator variable
KMM The number of clusters
para The number of parameters of a model
μk The center for each cluster
∞ The infinite recharge source
i The i-th tank
(swch) The model after using switch-back method
(m) The best model among one iteration
(0) The model at initiating stage
0 The initial estimate in the corresponding model

Fig. 1. Schematic graph of reservoir modeling. This figure shows that the state of the
geothermal system will change under certain activity. The ultimate goal of reservoir
modeling is to make a prediction of future response under certain production conditions.
Modeling such a system lies in finding a mathematical representation such that the cal-
culated response coincides with observed response as well as possible future responses to
production.
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