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a  b  s  t  r  a  c  t

We  develop  a new  geostatistical  method  to  combine  evidence  provided  by diverse  geological  data  sets
and  produce  maps  of  geothermal  resource  probability.  The  application  is to the  State  of  Hawaii,  and  the
data  sets  include  the  locations  and  ages  of  mapped  volcanic  centers,  gravity  and  magnetotelluric  mea-
surements,  groundwater  temperature  and  geochemistry,  ground  surface  deformation,  seismicity,  water
table  elevation,  and  groundwater  recharge.  Using  the  basic  principles  of Bayesian  statistics,  these  data
and expert  knowledge  about  the effects  and  importance  of  the data  are  used  to compute  the  probabilities
of  the  primary  resource  qualities  of elevated  subsurface  heat,  reservoir  permeability,  and  reservoir  fluid
content.  The  product  of  these  marginal  probabilities  estimates  the  joint  probability  of all  three  quali-
ties  and hence  the  probability  of  a successful  geothermal  prospect  at each  map  point.  An  analogous  set
of  algorithms  is  used  to quantify  the  confidence  in the  probability  at  each  point.  Not  surprisingly,  we
find  that  successful  geothermal  prospects  are most  probable  on the  active  volcanoes  of  Hawaii  Island,
including  the  area of  Hawaii’s  single  geothermal  energy  plant.  Probability  decreases  primarily  with  shield
volcano  age,  being  relatively  moderate  in select  locations  on Maui  and Lanai,  relatively  low  on  Oahu,  and
minimal  on  Kauai.  Future  exploration  efforts  should  consider  these  results  as  well  as  the  practical,  soci-
etal,  and  economic  conditions  that  influence  development  viability.  The  difficulties  of  interisland  power
transmission  mean  that  even  areas  with  moderate  to  low  probabilities  are  worth  investigating  on  islands
with  population  centers.

© 2016  Elsevier  Ltd. All  rights  reserved.

1. Introduction

We  conducted an assessment of geothermal resource potential
across the state of Hawaii, updating the last assessment which was
done three decades ago (Thomas, 1985). The overall goal is to iden-
tify the plays, or probable areas for geothermal energy development
in the fairway, of the Hawaiian volcanic island chain. The first of
three manuscripts (Lautze et al., 2016a) summarizes the geologic
conditions that support geothermal resources in Hawaii and the
datasets selected to provide evidence for these conditions. The third
paper (Lautze et al., 2016b) describes the essential practical and
economic criteria needed to assess development viability and, with
the results of the geologic considerations presented in this paper,
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recommends a prioritized list of sites for future exploration. This
manuscript—the second paper in the series—describes our meth-
ods and the results of processing the various geoscientific datasets
into probabilities of geothermal resources across the state.

Methods used to map  the spatial distributions of geothermal
resource potential can be categorized as knowledge-driven or
data-driven (Bonham-Carter, 1994). Knowledge-driven, or deter-
ministic, models rely on the judgment of experts to assign the
relative importance of different data types to resource potential.
These methods are needed especially in the reconnaissance phase
of exploration when few or no resources have been found (e.g. Prol-
Ledesma, 2000). Techniques of combining the evidence provided by
the data include Boolean operators (Noorollahi et al., 2008; Yousefi
et al., 2010), index quantification and weighting (Noorollahi et al.,
2008; Tüfekç i et al., 2010; Trumpy et al., 2015), and quantifica-
tion with fuzzy or continuous functions (Prol-Ledesma, 2000; Siler
et al., 2016). In contrast, data-driven models incorporate data on
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known resource locations or training sites to relate observational
evidence to resource potential. These methods use statistical tech-
niques including weight-of-evidence (Bonham-Carter et al., 1989;
Coolbaugh and Bedell, 2006; Coolbaugh et al., 2007), logistic regres-
sion (Coolbaugh et al., 2002, 2005), and evidence belief functions
(Carranza and Hale, 2003). Data-driven methods have been used
even more extensively in mineral resource exploration (e.g., Porwal
and Kreuzer, 2010). In this context, the method developed here is
knowledge-driven, uses continuous quantities for the influence of
different data types, but like some of the data-driven techniques,
the core algorithm is based on the principles of Bayesian statistics.
Unlike earlier methods used, that produced measures of resource
“favorability”, our method predicts relative probabilities.

A successful geothermal prospect must have all of three pri-
mary qualities: elevated heat (H), elevated permeability (P), and
adequate fluid (F) to deliver the heat. Table 1 lists the data types
used for Hawaii as indicators of each of quality, and summarizes
the evidence each data type provides as discussed in detail by
Lautze et al. (2016a). Section 2 of this paper reviews the theory
of our method, our approach to eliciting expert knowledge, and
the algorithm by which this knowledge and the data are combined
to compute probabilities. Section 3 details the specific parameters
and functions used for each data type and their individual effects on
the marginal probabilities of the three resource qualities. Section
4 presents the resulting resource probabilities and their associ-
ated confidence measures for the main Hawaiian Islands. Finally,
we close with a discussion of the strengths and weaknesses of our
method, and the role our results could play in Hawaii’s exploratory
decision-making process.

2. Methods of data processing and modeling probability
and confidence

2.1. Overview

The first building block of our method is a generalized linear
model (e.g., MCullah and Nelder, 1983) in which the evidence pro-
vided by each data type is weighted and summed in the logistic link
function (e.g., Bonham-Carter et al., 1989),

Pr(x)  =
[

1 + exp

(
−w0 −

m∑
i=1

wizi(x)

)]−1

. (1)

Here Pr(x) is the probability of just one of the resource qualities
(elevated heat H, permeability P, fluid F) at location x on the map. A
similar equation is used for each of the two other qualities. In this
equation zi(x) is a transformed and scaled (explained in Sections
2.2 and 2.3 below), real-number, form of data type i; wi is a weight
that reflects the relative importance of data type i to the quality of
interest; and m is the number of data types present at location x.
This equation implicitly includes a reference probability, or prior
probability Pr0, represented on the right-hand side by the quantity
w0. We  refer to Eq. (1) as the “voter equation” because it allows
each data type to influence the outcome (positively or negatively)
depending on its weight wi.

The general behavior of the voter equation can be understood
through a qualitative discussion. Suppose z1 is a quantity represent-
ing the gravity anomaly at location x, and z2 represents a measure
of electrical resistivity beneath the ground at x. Because high posi-
tive values of gravity are interpreted as indicating dense intrusive
source rock (and z1 is positive when the gravity anomaly is rela-
tively high), the associated weight w1 will be positive. In contrast,
unusually low resistivity (indicated by a negative value of z2) is
associated with hot rock and therefore w2 will be negative. Thus, a
large positive value of the sum  ̇ = w0 + w1z1 + w2z2 indicates a

high favorability of elevated heat. Clearly as more data types con-
tribute positively to the sum, the sum increases monotonically.
However, if there are five strong positive data contributions of ele-
vated heat from five different data types for example, then adding
a sixth positive contribution does not provide much new infor-
mation. This aspect is taken into account with the logistic link,

or expit function, Pr = exp it(˙)  = e˙/[1 + e˙] = [1 + e−˙]
−1

(Eq.
(1)), which spans 0–1 as does a true probability. In another location
the sum

∑
could be large and negative, in which case the proba-

bility of heat will be small. In yet another location where there are
no data, the data votes will be zero, but the probability will not be;
it will equal the prior probability Pr0 = expit(w0) = [1 + e−w0 ]−1.
The probabilities of elevated permeability and fluid are computed
in the same way.

Using the marginal probabilities of all three resource qualities
(PrH , PrP , PrF ), we  approximate the probability of a viable resource
PrR by the product of the marginals,

PrR(x) = PrH(x)PrP(x)PrF (x). (2)

This equation is the second building block of our method; like Eq.
(1), it is based on a conditional independence assumption that has
a long record of surprising robustness in Bayesian learning (e.g.,
Domingos and Pazzani, 1997; Porwal et al., 2006). We  refer to Eq.
(2) as the “veto equation” because if any one quality has a low
probability, so will the probability of a viable resource. The out-
put probabilities are evaluated at each 200 m × 200 m cell of the
model grid, the centers of which define x. The calculations were
performed primarily and displayed entirely using Generic Mapping
Tools (GMT) (Wessel et al., 2013). Some of the calculations, prior to
visualization, were done using Matlab

®
(www.mathworks.com).

2.2. Specifics: expert elicitation and defining weights (wi)

The voter Eq. (1) requires converting the starting data value Di
to its processed form zi, and relating the importance of the data,
quantified by its weight wi, to the probability of a given resource
quality. In this knowledge-driven, reconnaissance application, we
use expert elicitation (e.g., O’Hagan et al., 2006; O’Leary et al., 2009).
As such, the prospecting algorithm incorporates the expertise of
our research team, and is thus able to “think” like an expert with
years of experience. To understand how we do this, consider first
the baseline probability value Pr0 for a given resource quality (H,
P, or F). We  ask the expert for the probability of that quality at
an unknown location. The expert knows only that the location is
in Hawaii, and is free to solve the question in any way he or she
wishes. We  then set the expert’s estimated probability Pr0 equal to
expit(w0) and solve for w0, using the inverse function,

w0 = logit(Pr0) ≡ ln
(
Pr0/(1 − Pr0)

)
. (3)

To incorporate input from multiple experts, we weight by years of
experience and take the weighted average of their respective values
of w0.

Now consider how to elicit the effects of the first data type D1
(e.g., gravity) on the probability of a resource quality, for exam-
ple heat PrH . We  seek to define z1 and w1 so that with only that
data type appearing in the sum of the voter Eq. (1), the resulting
values of PrH at one or two values of D1 are consistent with the
expert’s intuition. (I) First, we  give each expert in our team a par-
ticularly promising data value in either its starting D+

1 or processed
z+1 form (whichever is more intuitive to the expert), and ask them
to estimate the corresponding probability Pr+H . (II) Second, we  then
ask the expert to estimate the value, D−

1 for which the data has no
effect on probability. Question (I) is used to establish the location
property—i.e., what PrH is at a given D1 (or z1) —for the depen-
dence of PrH on D1 alone. With the answer to question (I), question
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