Contents lists available at ScienceDirect

International Journal of Greenhouse Gas Control

journal homepage: www.elsevier.com/locate/ijggc

Atmospheric monitoring of carbon capture and storage leakage using radiocarbon

Greenhouse Gas Control

J.C. Turnbull^{a,b,*}, E.D. Keller^a, M.W. Norris^a, R.M. Wiltshire^a

^a GNS Science, Rafter Radiocarbon Laboratory, 30 Gracefield Rd., Lower Hutt, New Zealand ^b CIRES, University of Colorado at Boulder, Boulder, CO, USA

ARTICLE INFO

Article history: Received 1 September 2016 Received in revised form 8 November 2016 Accepted 10 November 2016

Keywords: Atmosphere Radiocarbon CO₂ Carbon capture

ABSTRACT

We outline the methodology for detection of carbon dioxide (CO_2) leaks to the atmosphere from carbon capture and storage (CCS) using measurements of radiocarbon in CO_2 . The radiocarbon method can unambiguously identify recently added fossil-derived CO_2 such as CCS leaks due to the very large isotopic difference between radiocarbon-free fossil derived CO_2 and natural CO_2 sources with ambient radiocarbon levels. The detection threshold of 1 ppm of fossil-derived CO_2 is comparable to other proposed atmospheric detection methods for CCS leakage. We demonstrate that this method will allow detection of a 1000 ton C yr⁻¹ leak 200–300 m from the source during the day and more than 600 m away at night. Using time-integrated sampling techniques, long time periods can be covered with few measurements, making the method leasible with existing laboratory-based radiocarbon measurement of a case study in Taranaki, New Zealand. Plant material faithfully records the radiocarbon content of assimilated CO_2 and we show that short-lived grass leaves and cellulose from tree rings provide effective time-integrated collection methods, allowing dense spatial sampling at low cost. A CO_2 absorption sampler allows collection at controlled times, including nighttime, and gives similar results.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Carbon capture and sequestration (CCS) is widely recognized as a feasible strategy for mitigating the impact of fossil fuel combustion on atmospheric carbon dioxide (CO₂) levels (e.g. Pacala and Socolow, 2004; IPCC, 2005; Bruckner et al., 2014). Yet leakage of sequestered CO₂ back into the atmosphere is of concern. Leaks of large enough magnitude could be a health hazard, and even small leaks return CO₂ to the atmosphere, reducing or altogether negating the effectiveness of the CCS process in mitigating climate change. Thus monitoring, attribution and quantification of any CO₂ leaks back to the atmosphere is an important component of the CCS process (e.g. European Commission, 2007; NETL, 2007; Dixon and Romanak, 2015), and is already required by regulation in some regions (e.g. European Commission, 2009).

E-mail address: j.turnbull@gns.cri.nz (J.C. Turnbull).

http://dx.doi.org/10.1016/j.ijggc.2016.11.017 1750-5836/© 2016 Elsevier Ltd. All rights reserved. Numerous methods for detecting CCS leaks into the atmosphere have been proposed. All of these methods make measurements of the locally measured trace gas mole fraction or isotopic composition of a trace gas to estimate the local atmospheric mole fraction of CO₂ due to the CCS leak (CO₂CCS). The observed CO₂CCS mole fraction is dependent both on the magnitude of the leak and on atmospheric transport of that leak to the measurement location.

Measurement of CO₂ mole fractions is the most obvious method, but suffers from a major challenge in that CCS leaks are likely to be small relative to the large and variable CO₂ background (Leuning et al., 2008; Loh et al., 2009; Jenkins et al., 2011, 2016; Barr et al., 2011). This background variability is primarily due to natural diurnally varying CO₂ sources and sinks from photosynthesis and respiration which can result in a 40 part per million (ppm) range in CO₂ mole fraction at a single location in a single day [e.g. Miles et al., 2012]. Thus the detection limit using CO₂ measurements alone is ~4 ppm in CO₂CCS mainly due to the large variability and uncertainty in the CO₂ background (Loh et al., 2009). Nonetheless, this method can be successful when measurements are made very close to the source (Jenkins et al., 2016; van Leeuwen et al., 2013).

^{*} Corresponding author at: GNS Science, Rafter Radiocarbon Laboratory, 30 Grace-field Rd., Lower Hutt, New Zealand.

 CO_2 from CCS will have no impact on atmospheric oxygen and hence the oxygen to nitrogen (O_2/N_2) ratio in the atmosphere, whereas the other land based CO_2 sources, biogenic CO_2 exchange (respiration and photosynthesis) and fossil fuel combustion, will both alter the O_2/N_2 ratio. Thus concurrent CO_2 and O_2/N_2 measurements can positively identify CCS leaks (Keeling et al., 2011). The O_2/N_2 method likely has a detection limit of about 3 ppm CO_2CCS (van Leeuwen and Meijer, 2015; Keeling et al., 2011).

The ¹³C content of CO₂ is another potential tracer for CCS leakage, as long as the CO₂CCS has a ¹³C content substantially different from that of the atmosphere and that of nearby biogenic and fossil CO₂ sources (e.g. Moni and Rasse, 2014; Garcia et al., 2012; Fessenden et al., 2010; Krevor et al., 2010; McAlexander et al., 2011). The ¹³C content is usually described as δ^{13} C, the deviation of the ¹³C content from that of a standard material in units of ‰. The detection threshold of this method depends on the isotopic difference between the CO₂CCS, the ambient atmosphere and any other CO_2 sources, and the degree to which the $\delta^{13}C$ of the CO_2CCS is well known. The current atmosphere has δ^{13} C of about -8% (Derek et al., 2014) and biogenic CO_2 ranges from -12 to -30% (Tans, 1981). CO₂CCS derived from natural gas will usually be the most readily detectable since it has a typical δ^{13} C range of -40 to -50%(Tans, 1981), although some studies have suggested a much wider range of -28 to -75‰ (Milkov, 2005; Palstra and Meijer, 2014). CO₂ derived from biogenic sources and then sequestered ("biogas") will have a similar range of values (Palstra and Meijer, 2014). Coal and oil (-20 and -24‰, respectively (Tans, 1981)) derived CO₂CCS may be more difficult to distinguish particularly in areas with strong biogenic CO₂ fluxes. Even so, under many circumstances the δ^{13} C method is likely slightly better than using CO₂ mole fractions alone, and has a detection limit of about 3–5 ppm (Keeling et al., 2011; Moni and Rasse, 2014).

It is also possible to inject "correlate" trace gasses into carbon reservoirs along with CO₂ and monitor leakage of these gasses (Hurry et al., 2016; Susanto et al., 2016; Garcia et al., 2012; Pekney et al., 2012; Watson and Sullivan, 2012; Wells et al., 2009). The correlate gas can be intrinsically associated with a particular CO₂ source used for CCS, or deliberately added. If the leak rate of the correlate gas can be determined and the ratio of correlate to CO₂ in the CCS reservoir is known and is not altered between injection and leakage, then the CO₂ leak rate can also be calculated. For example, in the Otway project, the CO₂ injected into the reservoir naturally contained high levels of methane. The leaked methane was more readily detectable in the atmosphere than leaked CO₂ since the magnitude of the CH₄ leak was much larger relative to the CH₄ background (Loh et al., 2009). Some care must be taken with tracer methods since the tracer gas may have flow pathways and leak rates depending on the particular gas and the sequestration environment. Use of added tracers such as perfluorocarbons (PFCs) can be an extremely sensitive detector of leaks but the volume of PFCs required likely makes the method impractical for routine monitoring (Watson and Sullivan, 2012).

Here we will consider the radiocarbon (14 C) method as a tracer for CO₂CCS. 14 C, the radioactive isotope of carbon, is entirely absent in fossil derived CO₂ (CO₂ff) whereas natural CO₂ sources contain 14 C at levels similar to the atmosphere. This makes the radiocarbon method an unambiguous detector of recently added CO₂ff in the atmosphere, and in principle an ideal tracer for CO₂CCS (Dixon and Romanak, 2015; van Leeuwen and Meijer, 2015). We discuss the principles of the radiocarbon method, the different field sampling technologies and their advantages and disadvantages, and the detection limits of the radiocarbon method.

Our objective in this paper is to demonstrate the utility of the 14 C method in detecting CO₂CCS. We repurpose previously published observations of CO₂ff determined from 14 C observations to provide an analog for CO₂CCS and combine these observations with

new model simulations to test the sensitivity and detection limit of the ¹⁴C method. We aim to demonstrate the ability to *detect* CCS leaks with *quantification* of the magnitude of the leak being of only secondary concern. Our main observational dataset is from the Kapuni natural gas processing plant in rural Taranaki, New Zealand (Turnbull et al., 2016, 2014) and we also use results from other similar studies (Donders et al., 2013; Cook et al., 2001). Although these datasets are previously published elsewhere, we include explanations of the sampling methods and calculations to illustrate the ¹⁴C method. The Kapuni observations were initially designed to test how well point source CO₂ff emissions can be quantified from atmospheric observations. Here we use them as an analog, along with new atmospheric transport model simulations, to understand how the method could be scaled to detect CCS leaks.

2. Radiocarbon method

¹⁴C is produced naturally in the upper atmosphere and rapidly converts to radiocarbon monoxide (14CO) and then to radiocarbon dioxide (¹⁴CO₂) over a period of weeks to months. ¹⁴CO₂ then exchanges throughout the carbon cycle. ¹⁴C is radioactive with a half-life of 5730 ± 40 years (Karlen et al., 1968). Thus fossil fuels, which have been out of contact with the atmosphere for millions of years, contain no ¹⁴C, whereas natural CO₂ sources which exchange carbon with the atmosphere on timescales of a few years, such as biogenic respiration, contain ¹⁴C at levels similar to that of the atmosphere. ¹⁴CO₂ is therefore now widely recognized as the best tracer for recently added fossil fuel CO₂ (CO₂ff) in the atmosphere (Levin et al., 2003; Ciais et al., 2010; Balter, 2012). Most CCS sites will sequester fossil fuel derived CO₂, so the radiocarbon method would be widely applicable to most CCS leaks. Like ¹³CO₂ measurements, the ¹⁴CO₂ content is intrinsic to the injected CO₂, and thus there are no problems with differential transport of the tracer species relative to CO₂CCS itself, nor requirements for special treatment of the CO₂ prior to injection.

The major challenge with the radiocarbon method is the difficulty of measurement. Currently, in situ ¹⁴CO₂ measurement is not possible (although new laser-based methods are being developed and in situ atmospheric ¹⁴CO₂ measurement may become possible some years in the future once several technical challenges are overcome [e.g. Galli et al., 2013]). Instead, ¹⁴CO₂ measurement is typically done by collecting CO₂ from air and processing in a laboratory setting. CO_2 is extracted from whole air and the resulting CO_2 is reduced to graphite followed by measurement of the ¹⁴C content by accelerator mass spectrometry (AMS) (e.g. Turnbull et al., 2007; Graven et al., 2007). Two alternative methods use radiometric counting (gas or liquid scintillation counting), whereby the particles generated by radioactive decay of ¹⁴C are measured. These methods can achieve similar measurement precision to AMS when long counting times are used and require three orders of magnitude more CO₂ (Levin et al., 2003). Costs for all methods are a few hundred US dollars per measurement. It is of particular note that unlike ¹³CO₂, isotopic fractionation is not a concern for ¹⁴CO₂ measurement. The Δ^{14} C notation used to represent 14 C content (and described further in Section 2.2) includes a correction based on the measured ¹³C content for any fractionation that has occurred naturally or during sample collection and processing (Stuiver and Polach, 1977).

2.1. Integrated sample collection methods

 CO_2 can be collected from air for radiocarbon measurement in a number of different ways, depending on the particular application. Here we focus on time-integrated sampling techniques, whereby CO_2 or a proxy is collected from a single site averaged over a period Download English Version:

https://daneshyari.com/en/article/5478887

Download Persian Version:

https://daneshyari.com/article/5478887

Daneshyari.com