Accepted Manuscript

Green and facial combustion synthesis of ${\rm Sr_3Al_2O_6}$ nanostructures; a potential electrochemical hydrogen storage material

Cleaner

Ali Salehabadi, Masoud Salavati-Niasari, Tahereh Gholami

PII: S0959-6526(17)32262-X

DOI: 10.1016/j.jclepro.2017.09.250

Reference: JCLP 10755

To appear in: Journal of Cleaner Production

Received Date: 14 June 2017

Revised Date: 21 August 2017

Accepted Date: 27 September 2017

Please cite this article as: Ali Salehabadi, Masoud Salavati-Niasari, Tahereh Gholami, Green and facial combustion synthesis of Sr₃Al₂O₆ nanostructures; a potential electrochemical hydrogen storage material, *Journal of Cleaner Production* (2017), doi: 10.1016/j.jclepro.2017.09.250

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

- ➤ Sr₃Al₂O₆ nanoparticles were fabricated for the first time *via* a simple combustion method.
- ➤ The combustion process was arisen in the presence of glucose.
- ➤ The unique structure and physical features of Sr₃Al₂O₆ nanoparticles was investigated.
- ➤ Owing to the unique structure, Sr₃Al₂O₆ nanoparticles was used in an energy storage setup.
- ➤ Sr₃Al₂O₆ nanosystems were utilized in order to find the hydrogen content.

Download English Version:

https://daneshyari.com/en/article/5479142

Download Persian Version:

https://daneshyari.com/article/5479142

<u>Daneshyari.com</u>