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Multiscale modeling with carbon nanotubes
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Abstract

Technologically important nanomaterials come in all shapes and sizes. They can range from small molecules to complex composites

and mixtures. Depending upon the spatial dimensions of the system and properties under investigation computer modeling of such

materials can range from equilibrium and non-equilibrium quantum mechanics, to force-field-based molecular mechanics and kinetic

Monte Carlo, mesoscale simulation of evolving morphology, and finite-element computation of physical properties. This brief review

illustrates some of the above modeling techniques through a number of recent applications with carbon nanotubes: nano

electromechanical sensors (NEMS), chemical sensors, metal–nanotube contacts, and polymer–nanotube composites.

r 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

More than 15 years after its initial discovery, carbon
nanotubes (CNTs) [1] continue to be one of the hottest
research areas in all of science and engineering. The interest
is driven by the possibility of several commercial applica-
tions [2–6], including: Field emission-based flat panel
displays, transistors, quantum dots, hydrogen storage
devices, structural reinforcement agents, chemical and
electromechanical sensors, nanoscale manipulators,
probes, and tweezers. At the same time, the highly regular
atomic structure of CNTs and the large degree of structural
purity makes it accessible to accurate computer modeling
using a variety of theoretical techniques. In fact, ever since
the discovery of CNTs it has provided a fertile ground for
theoretical simulations and analysis. The prediction of the
dependence of CNT’s electronic structure on its chirality
[7–9] came within a year of the initial experimental
discovery [1]. Since then there have been a huge number
of theoretical investigations [10–18] of growth mechanisms,
structure and energetics of topological defects, mechanical
and electrical response to various kinds physical perturba-

tion, field-emission from tips of metallic CNTs, electronic
effects of doping and gas adsorption, chemical reactivity,
interaction with polymers, capillary effects, CNT–metal
contacts, H- and Li-storage, thermal conductivity, encap-
sulation of organic and inorganic material, optical proper-
ties, as well as intrinsic quantum effects like quantized
conductance, Coulomb Blockade, Aharonov–Bohm effect,
Kondo effect, and so on. Computational approaches used
in the above work include solving diffusion equations, QM
simulations (density functional theory, tight-binding, and
semi-empirical methods), classical molecular dynamics,
kinetic Monte Carlo, Genetic algorithms, and Green’s-
function-based electronic transport theory. This paper
illustrates several of the above theoretical techniques
through a few recent modeling studies of CNTs. In the
following, we provide a brief overview of the theoretical
techniques, which is followed by separate sections detailing
each application example.

2. Theoretical techniques: a brief overview

2.1. Density functional theory (DFT)

In principle, all chemical information of any nanostruc-
ture can be obtained if one could solve the Schrödinger
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wave equation for all relevant electrons of the system.
Ideally, all one should require as an input are the positions
and element identity of all atoms describing the nanos-
tructure. Such computational methods are called ab initio
or first-principles methods [19]. The Schrödinger equation
of an interacting system of electrons cannot be solved
analytically, and involves a number of physically motivated
approximations and clever numerical tricks. The most well
accepted formalisms can be broadly classified into two
types: those based on the Hartree–Fock method [20], and
those based on the DFT [21]. Due to better scaling with the
number of electrons, DFT is quickly becoming the first-
principles technique of choice in technologically important
problems. DFT is based on a theorem due to Hohenberg
and Kohn [22], which states that all ground state properties
are functions of the total electronic charge density r(r). The
total energy of an electron gas can be written as a sum of
the kinetic, potential (electrostatic), exchange and correla-
tion energies. A practical implementation of this formalism
into computer programs was made possible by the local
density approximation (LDA) of Kohn and Sham [23],
which recast the many-electron problem into a problem of
single electrons moving in an average field of the other
electrons and ions. The basic formalism has stood the test
of time, although important subsequent developments on
gradient corrections to the LDA and the exchange-
correlation functional have increased the accuracy of
DFT significantly. There are several different DFT codes
available commercially, differing primarily in the choice of
the basis functions in which the electronic wave functions
are expanded, and the scheme of integration. For the work
reported here, we used the DFT code DMol3 [24]. In the
present work all electrons in the system were considered
explicitly, and the electronic wave functions were expanded
in a double-numeric polarized (DNP) basis set. The
calculations employed a ‘‘medium’’ integration grid, and
a gradient-corrected exchange-correlation functional due
to Perdew, et al. [25].

2.2. Classical molecular mechanics

Some of the applications discussed here, especially
electromechanical sensing and polymer–CNT composites
involve long nanotube structures with several hundred to a
few thousand atoms. First-principles DFT calculations on
systems of such size is prohibitively expensive. An explicit
treatment of electrons is also unnecessary in situations
where no making or breaking of chemical bonds occur in
the process of interest. In such cases one uses classical
molecular mechanics (MM) employing interatomic inter-
actions or force fields, which are parameterized analytical
functions of the atomic positions only [26]. For the
polymer–CNT composite system, we used a class II force
field COMPASS [27], developed primarily for condensed
organic systems. For NEMS applications, on the other
hand, a metallic AFM tip was modeled by a needle made
up of Li atoms (Li was chosen to ensure a metallic system

with the fewest number of electrons, thus reducing the
computational load). Interactions in such a system were
described by the universal force field (UFF) [28], which is
rules-based and has a broader coverage of the periodic
table. In order to explore possible re-arrangement of
chemical bonds in a localized region one often cuts a small
model out of the original structure, and relaxes it with a
quantum mechanical (QM) method of choice. Such a
hybrid QM/MM method using DMol3/UFF was employed
in the NEMS application, as discussed below in Section
4.1.

2.3. Electronic transport modeling—non-equilibrium

Green’s function

Electromechanical and chemical sensors typically oper-
ate by changing electrical conductance of the active device
when subjected to a mechanical perturbation or upon the
absorption of a chemical species. Mesoscopic electron
transport through molecular wires is best described by an
energy-dependent transmission function T(E), which
strongly depends on the (discrete) electronic levels of the
molecular wire (in our case, a nanotube), the levels in the
(usually metallic) leads or electrodes, and broadening of
the electronic levels in the wire due to chemical coupling to
the electrodes [29–33]. Such physics is most conveniently
described under the formalism of non-equilibrium Green’s
function (NEGF). The starting point is the Green’s
function of an isolated system at an energy E, which is
defined by

ðE Sij �HijÞG
R;jk ¼ dk

i , (2.1)

where di
k is the Kronecker delta, and Sij ¼ hijjiandHij ¼

hijHjji are the overlap and Hamiltonian matrix elements
between electronic states i and j, respectively. However, we
are interested in systems in which a nanoscale region is
coupled with two semi-infinite electrodes at the two ends
(the so-called two-probe system). In such a system, the
coupling to the electrodes (mathematically expressed in
terms of the so-called self-energy matrices S) modifies Eq.
(2.1) to the form:

ðE Sij �Hij �
X

L;ij
�
X

R;ij
ÞGR;jk ¼ dk

i , (2.2)

where SL,R are the retarded self-energies of the left and the
right semi-infinite contacts. The transmission at each
energy is then found [29–33] from :

TðEÞ ¼ GR;ijGL;jkGA;klGR;li, (2.3)

where GL,R ¼ i(SR
L,R�S

A
L,R) are the couplings to the left

and right leads and the superscripts R and A represent
retarded and advanced quantities, respectively. Finally, the
total conductance of the tube is computed using Land-
auer–Büttiker formula [29–33]:

G ¼
2e2

h

Z 1
�1

TðEÞ �
qf o

qE

� �
dE, (2.4)
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