Accepted Manuscript

Sustainable Use of Copper Slag in Self Compacting Concrete Containing Supplementary Cementitious Materials

Rahul Sharma, Rizwan A. Khan

PII:	S0959-6526(17)30466-3
DOI:	10.1016/j.jclepro.2017.03.031
Reference:	JCLP 9158
To appear in:	Sustainable Use of Copper Slag in Self Compacting Concrete Containing Supplementary Cementitious Materials
Received Date:	26 September 2016
Revised Date:	05 March 2017
Accepted Date:	05 March 2017

Please cite this article as: Rahul Sharma, Rizwan A. Khan, Sustainable Use of Copper Slag in Self Compacting Concrete Containing Supplementary Cementitious Materials, *Sustainable Use of Copper Slag in Self Compacting Concrete Containing Supplementary Cementitious Materials* (2017), doi: 10.1016/j.jclepro.2017.03.031

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

1	Sustainable Use of Copper Slag in Self Compacting Concrete Containing
2	Supplementary Cementitious Materials
3	Rahul Sharma ^a , Rizwan A Khan ^a
4	^a Dr B R Ambedkar National institute of Technology, Department of Civil Engineering,
5	Jalandhar, Punjab, India, 144011
6	
7	Abstract
8	Copper slag (CS) is an industrial by-product obtained in bulk quantity during matte smelting and
9	refining process of copper metal. The current research is aimed to investigate the sustainable
10	utilisation of CS as fine aggregates in Self Compacting Concrete (SCC) using fly ash (FA) and
11	silica fume (SF) as Supplementary Cementitious Materials (SCMs). Total seven concrete mixes
12	were cast in which one mix was binary blend containing 60 % ordinary portland cement (OPC),
13	40 % FA and 0 % SF with 100% sand and 0 % CS as control concrete. The other six mixes were
14	ternary blends containing 60 % OPC, 30 % FA and 10 % SF with 0, 20, 40, 60, 80 and 100 % CS
15	substitution. The fresh properties of SCC mixes were found to be escalating up to 100 % CS
16	substitution. The maximum improvements in compressive and splitting tensile strength with
17	respect to control were obtained as 20 % and 60 % CS substitution. Ultrasonic pulse velocity of
18	all ternary SCC mixes was found to be increased, whereas initial surface absorption and
19	sorptivity reduced in comparison to control concrete. The results of scanning electron
20	microscopy and energy dispersive spectroscopy illustrate the formation of uniformly distributed
21	and compact C-S-H gel in presence of CS after 120 d, with Ca/Si ratio ranging between 0.77 and
22	1.11. The SCC mix with 100 % CS substitution was found to be most economical with least
23	consumption of embodied energy and emission of embodied carbon dioxide. This study

Download English Version:

https://daneshyari.com/en/article/5480097

Download Persian Version:

https://daneshyari.com/article/5480097

Daneshyari.com