# Accepted Manuscript

Multi objective optimization using different methods of assigning weights to energy consumption responses, surface roughness and material removal rate during rough turning operation

Raman Kumar, Paramjit Singh Bilga, Sehijpal Singh

| PII:           | S0959-6526(17)31247-7         |  |
|----------------|-------------------------------|--|
| DOI:           | 10.1016/j.jclepro.2017.06.077 |  |
| Reference:     | JCLP 9827                     |  |
| To appear in:  | Journal of Cleaner Production |  |
| Received Date: | 22 October 2016               |  |
| Revised Date:  | 04 June 2017                  |  |
| Accepted Date: | 09 June 2017                  |  |

Please cite this article as: Raman Kumar, Paramjit Singh Bilga, Sehijpal Singh, Multi objective optimization using different methods of assigning weights to energy consumption responses, surface roughness and material removal rate during rough turning operation, *Journal of Cleaner Production* (2017), doi: 10.1016/j.jclepro.2017.06.077

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.



## Word Count: 10736

## MULTI OBJECTIVE OPTIMIZATION USING DIFFERENT METHODS OF ASSIGNING WEIGHTS TO ENERGY CONSUMPTION RESPONSES, SURFACE ROUGHNESS AND MATERIAL REMOVAL RATE DURING ROUGH TURNING OPERATION

#### Raman Kumar<sup>a</sup>, Paramjit Singh Bilga<sup>b</sup>, Sehijpal Singh<sup>c</sup>

<sup>6</sup> Research Scholar, Department of Mechanical Engineering, I.K. Gujral Punjab Technical University, Jalandhar-Kapurthala, Punjab, India; e-mail: <u>sehgal91@yahoo.co.in</u>

8 <sup>b</sup> Department of Mechanical Engineering, GNDEC, Ludhiana, Punjab, India: e-mail: <u>psbilga@gndec.ac.in</u>.

9 <sup>c</sup> Department of Mechanical Engineering, GNDEC, Ludhiana, Punjab, India: e-mail: <u>sehijpalsingh@yahoo.in</u>

Index Terms—Turning, multi objective optimization, energy consumption, power factor, energy
efficiency, surface roughness, MRR, Taguchi-Method, AHP, TOPSIS, Entropy-Method

# 12 ABSTRACT

1

2

3

4 5

The present research work focuses on simultaneous optimization of prime energy consumption 13 responses, surface roughness and material removal rate for sustainable machining operations. 14 15 The experiments were conducted on rough turning of EN 353 alloy steel with multi-layer coated tungsten carbide insert. The effect of input parameters: nose radius, cutting speed, feed rate and 16 depth of cut along with their interactions were studied on the response parameters viz. power 17 factor (PF), active power consumed by the machine (APCM), active energy consumed by the 18 machine (AECM), energy efficiency (EE), surface roughness (Ra) and material removal rate 19 20 (MRR). The Taguchi's L<sub>27</sub> orthogonal array had been used for design of experiments by using Minitab 16 software. The weights of importance to the responses were assigned by Equal, 21 Analytical Hierarchy Process (AHP) and Entropy weights method. The multi performance 22 composite index (MPCI) was obtained by Technique for Order Preference by Similarity to Ideal 23 Solution (TOPSIS) method and was optimized with Taguchi method. The results showed that the 24 MPCI with these three different weight criteria had different optimum control factor levels. At 25 optimal turning parameters of MPCI using AHP weights, Equal weights and Entropy weights, 26 there was an improvement in MPCI of 319.72%, 45.38% and 9.02% respectively compared to 27 turning parameters in common use. The depth of cut was found to be a vital parameter for MPCI 28 with AHP weights and nose radius for MPCI with Equal and Entropy weights. Hence the choice 29 of method of assigning weights of importance to the responses and even the optimization method 30 plays important role in decision making in multi objective optimization. 31

# 32 ABBREVATIONS:

| А     | : Cutting Speed                                 | MPCI            | : Multi Performance Composite Index                      |
|-------|-------------------------------------------------|-----------------|----------------------------------------------------------|
| A*B   | : Interaction of Cutting Speed and Feed Rate    | MRR             | : Material Removal Rate                                  |
| A*C   | : Interaction of Cutting Speed and Depth of Cut | n               | : Number of Experiments                                  |
| A*D   | : Interaction of Cutting Speed and Nose Radius  | nor             | : Number of Responses in the Factor Level<br>Combination |
| ACE   | : Active Cutting Energy                         | OA              | : Orthogonal Array                                       |
| ACP   | : Active Cutting Power                          | РС              | : Percentage Contribution                                |
| AECM  | : Active Energy Consumed by the Machine         | PF              | : Power Factor                                           |
| АНР   | : Analytical Hierarchy Process                  | p <sub>ij</sub> | : Probability of Matrix                                  |
| ANOVA | : Analysis of Variance                          | q <sub>ij</sub> | : An Element of the Decision Matrix                      |

Download English Version:

# https://daneshyari.com/en/article/5480421

Download Persian Version:

https://daneshyari.com/article/5480421

Daneshyari.com