ARTICLE IN PRESS

Journal of Cleaner Production xxx (2016) 1-17

Contents lists available at ScienceDirect

Journal of Cleaner Production

journal homepage: www.elsevier.com/locate/jclepro

Eco innovation strategies for promoting cleaner cement manufacturing

Siti Aktar Ishak ^{a, b}, Haslenda Hashim ^{a, b, *}, Tan Sie Ting ^{a, b}

^a Process Systems Engineering Centre (PROSPECT), Research Institute for Sustainable Environment, Universiti Teknologi Malaysia (UTM), 81310, UTM, Johor Bahru, Johor, Malaysia

^b Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia (UTM), 81310, UTM, Johor Bahru, Johor, Malaysia

ARTICLE INFO

Article history: Received 11 January 2016 Received in revised form 2 June 2016 Accepted 3 June 2016 Available online xxx

Keywords: Mitigation Cleaner production Carbon reduction Process improvement Optimisation

ABSTRACT

Carbon dioxide (CO₂) emissions in cement plants are generated by the decarbonation of raw materials and fuel combustion in the cement kiln during the cement clinker production process and account for 8% of global emissions. This paper presents a mixed integer linear programming (MILP) by considering various mitigation measures, such as co-processing of fuels, kiln improvements and carbon capture and storage (CCS) yields, that can have substantial benefits. The benefits include cleaner cement production with minimum production costs, while satisfying the quality standard, carbon reduction target, and fuels substitution rate. The developed model is applied to a case study in order to demonstrate the applicability of the model. For the base case, the optimal cost for clinker production is USD 90.21/t clinker while CO₂ emissions generated from both calcination of raw materials and fuels combustion is 531.68 kg CO₂/t clinker and 325.00 kg CO₂/t clinker. It was found that the highest possible CO₂ emissions reduction that can be achieved by a combination of co-processing, kiln improvements and CCS technology is 79%, with an increment cost of USD 136.46/t clinker.

© 2016 Published by Elsevier Ltd.

1. Introduction

Cement is an important component of concrete as it is considered to be a binder that holds concrete mixture together and gives it strength. Despite the fact that it is an energy and emission intensive industry, the cement industry is essential for the economic development of a country. The manufacturing process for the cement industry consists of 3 major steps: raw material preparation, clinker production, and cement production. In raw material preparation, quarrying is done first, then followed by prehomogenization and grinding of raw materials. During clinker production, burning of fuels to provide heat and chemical reaction occurs in a cement kiln. A chemical reaction between prehomogenized raw materials and fuels' ash in the cement kiln produces clinker that is then stored in clinker silos. During cement production, blending of clinker with grinding aids for final adjustment occurs, followed by storage, then shipment. Fig. 1 shows the general dry and wet manufacturing process.

* Corresponding author. Process Systems Engineering Centre (PROSPECT), Research Institute for Sustainable Environment, Universiti Teknologi Malaysia (UTM), 81310, UTM, Johor Bahru, Johor, Malaysia.

E-mail address: haslenda@cheme.utm.my (H. Hashim).

http://dx.doi.org/10.1016/j.jclepro.2016.06.022 0959-6526/© 2016 Published by Elsevier Ltd.

The decarbonation reaction of raw materials - normally limestone (conversion of limestone to lime) or calcium carbonates (CaCO₃) rich materials in cement kiln - contributes to about 50% of the total carbon dioxide (CO₂) emissions of a cement plant while the combustion of fuels in the cement kiln leads to 40% of the total CO₂ emissions (Benhelal et al., 2013). According to Tsakalakis and Stamboltzis (2008), roughly two thirds of the total electrical energy consumption for cement production are used for particle size reduction (grinding) and about 2% of the electricity produced globally is used during the grinding process of raw materials (Katsioti et al., 2009). Cement industry is a significant contributor of greenhouse gas (GHG) emission. It was found that reducing the emission may lead to substantial reduction of overall GHG emission (Valderrama et al., 2012). Improving thermal efficiency would create a high potential for reducing CO₂ emissions from cement plants.

An optimisation model towards emission mitigation in cement plants has been discussed by numerous researchers. The most relevant study was published by Kookos et al. (2011). The author developed a mixed integer linear programming (MILP) optimisation model to minimise cement manufacturing costs by coprocessing. Carpio et al. (2008) used mathematical modelling to

Please cite this article in press as: Ishak, S.A., et al., Eco innovation strategies for promoting cleaner cement manufacturing, Journal of Cleaner Production (2016), http://dx.doi.org/10.1016/j.jclepro.2016.06.022

ARTICLE IN PRES

S.A. Ishak et al. / Journal of Cleaner Production xxx (2016) 1-17

Nomenclature		V	Volumetric gas flow in Nm ³ /t clinker under normal
		α, β, γ, θ	Linearization variables for <i>mX</i>
Sets			
a	Alkalis	Abbrevia	ations and nomenclature
fg	Flue gases	ASU	Air separation unit
h	Heavy metals	BP	Back propagation
j	Raw materials	С	Carbon content in fuels
k	Fossil fuels	C_2S	Dicalcium silicate
1	Non fossil fuels	C ₃ A	Tricalcium aluminate
0	Oxides	C ₃ S	Tricalcium silicate
р	Clinker phases	C₄AF	Tetracalcium aluminoferrite
S	Sulfurs	CaCO ₃	Calcium carbonate
		CaO	Calcium oxide
Parameters		CCS	Carbon capture and storage
А	Availability in kg/t clinker	CL	Carbon looping
Bogue	Bogue value	CO_2	Carbon dioxide
C	Unit cost in \$/kg	GA	Genetic algorithm
CEF	Carbon emission factor in kg CO_2/kg	GAMS	General Algebraic Modelling System
CO _{2GHG}	Current CO ₂ emission without mitigation method in kg	HDP	Heuristic dynamic programming
	CO ₂ /t clinker	LCA	Life cycle assessment
FCI	Capital investment in \$ M	MBM	Meat bone meal
М	Big M constant	MEA	Monoethanolamine
MB	Amount of <i>p</i> th clinker phases in clinker product in %.	MgO	Magnesium oxide
mw	Molecular weight in kg/kmol	MILP	Mixed integer linear programming
n _c	Effects when oxy-fuel capture is selected	MLD	Mixed logic dynamic
NCV	Net calorific value in GJ/kg	NCV	Net calorific value
Ø	Effects when fuels are selected	N ₂	Nitrogen
OC	Operating cost in \$ M/y	0&M	Operating and maintenance
St	Stoichiometric for O_2 required for fuel combustion in	02	Oxygen
	kg O ₂ /kg	OPC	Ordinary Portland cement
TED	Thermal energy demand in GJ/t clinker	PC	Petroleum coke
TEDr	Thermal energy reduction in %	PS	Pattern search
TSR	Thermal substitution rate in %	PSO	Particle swarm optimisation
ε	Carbon capture and storage efficiency in %	RDF	Refuse derived fuel
ω	Mass fraction in wt%	S	Sulfur content in fuels
		SO3	Sulfur trioxide
Binary variables		SS	Sewage sludge
X	Technology selections	TED	Thermal energy demand
		TSR	Thermal substitution rate
Continuous variables		TDF	Tire derived fuel
т	Mass in kg/t clinker		
	<u>.</u>		

calculate whether the substitution levels of the primary fuels by alternative fuels is possible. Similarly, Oyepata and Obodeh (2015) used Particle Swarm Optimisation (PSO) to find the whether optimal cost for cement production is bounded by environment constraint and cement quality. The results shows that the optimal cost with the use of alternative fuel can be reduced by 30-70% without compromising the product. The studies, however, only considered co-processing in mitigating CO₂ emission from cement plants.

The integration of various methods using MILP optimisation has been discussed by several studies. Adebiy et al. (2015) discussed the implementation of several energy efficient technologies in the cement plant. Ba-Shammakh et al. (2008) considered three mitigation options: efficiency improvement, switching to less carbon content fuel and applying a post combustion capture system. Ogbeide (2010) also considered several energy efficient technologies, fuel switching and a post combustion capture system. The models that considered economic and environmental factors, however, did not consider how the selected technologies will affect the quality and chemistry of the product and the effects of CO_2 reduction on the raw materials and fuels consumption. Moya et al. (2010) studied a cost effective combination of retrofitting of rotary kilns, energy efficient grinding technology (substitution of ball mills to vertical roller mills), co-generation (waste heat recovery), and a post combustion capture system to improve energy efficiency and mitigate CO_2 emissions up to 2030. The study proposed an economical optimisation model with no consideration of quality and chemistry of the product; the environmental aspect of the study is driven by the economic value of the savings.

As a whole, few studies have implemented systematic and comprehensive modelling to evaluate the economic and environmental impact from various mitigation methods on cement quality and production. There is also a lack of optimisation studies that consider the potential of an oxy-fuel combustion system as one of the options for capture technologies. This study integrates various CO₂ mitigation in cement plants while satisfying cement quality

2

Please cite this article in press as: Ishak, S.A., et al., Eco innovation strategies for promoting cleaner cement manufacturing, Journal of Cleaner Production (2016), http://dx.doi.org/10.1016/j.jclepro.2016.06.022

Download English Version:

https://daneshyari.com/en/article/5480616

Download Persian Version:

https://daneshyari.com/article/5480616

Daneshyari.com