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a b s t r a c t

The continent of Africa has the highest prevalence of hunger and poverty in the world. In this paper, an
Environmental Policy Integrated Climate (EPIC) model combined with a Crop Choice Decision Model
(CCDM) is applied to simulate the production and spatial distribution of rice, wheat, millet, maize,
sorghum and cassava in Africa from 1993 to 2012 converted into calories. From this, we calculate the size
of the undernourished population according to the Average Dietary Energy Requirement index of the
Food and Agriculture Organization of the United Nations (FAO) and study the trends experienced in
different countries. The results show that (1) the distribution of different crops has a horizontal zonality
from north to south; (2) although the distribution of different crops in Africa did not change significantly
from 1993 to 2012, the total crop planting area declined, especially in the middle part of Africa; (3) the
undernourished population has increased, while the proportion of undernourished people decreased;
and (4) land tenure reform and international food aid has made a great contribution to improved food
security in Africa. A GIS-based EPIC (GEPIC) model combined with a CCDM can enable the spatial explicit
assessment of food security and the microscopic study of food security on large scale, providing more
accurate decision-making information for policy makers.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Food security, defined as people having “access to sufficient, safe
and nutritious food which meets their dietary needs and food
preferences for an active and healthy life” (FAO, 2013a), remains an
elusive reality for much of the world’s population (Pirani and
Arafat, 2016). It is the focus of a considerable amount of literature
that has largely assessed food security at different spatial-temporal
scales as a consequence of changes in global climate, world popu-
lation, food policies and agricultural technology (Battisti and
Naylor, 2009; Tao et al., 2009; Lobell et al., 2008).

Many studies have concentrated on the African continent
because of the increase, in absolute numbers, of under-nourished
people and its unstable and serious food problem, which is worse
than any other region (Conceiç~ao et al., 2016; Devereux, 2012).
According to FAO-food security indicators, approximately 22.9% of

the Africa population suffered from undernutrition between 2010
and 2012, nearly double the world average (12.5%), and 28.9% did
not have access to adequate food supplies (FAO, 2013b). Under-
nourishment results in increased rates of disease, increased mor-
tality reduced labor productivity and restricts the economic growth
of many African countries. It occurs when the dietary consumption
of people is continuously below the average dietary energy
requirement of enough food to maintain health and perform
normal physical activities (Soriano and Garrido, 2016), and formally
recognized by people’s anthropometric scores falling below a
selected cut-off point (Nube, 2001). Low food production associated
with population growth also means that Africa’s overall food pro-
duction per capita is declining and starvation rates are increasing
(Mbow et al., 2014).

In order to adapt food supplies to meet future challenges, re-
searchers have developed tools to support the protection of culti-
vated land and associated policymaking. Models to simulate crop
production and distribution are receiving increased attention
(Rosenzweig et al., 2013). These are process-based models that
simulate growth, development and yield of crops as a function of
weather and soil conditions, crop management scenarios and
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genetic information (Fischer et al., 2005). Using hypothetical con-
ditions, they predict the behavior of feedback-regulated ecosystems
(White et al., 2011). However, process type models may fail when
yield-decreasing factors are not included in the model (Nendel
et al., 2013). Compared with process type models, statistical-
based models have a reduced execution time and demand for
input data, so may offer an alternative at least at a regional scale
(Wenkel et al., 2013). However, the variations in input data may
mean that the results generated by these models are insufficiently
accurate, especially when applied in un-calibrated conditions
(Asseng et al., 2013; Eitzinger et al., 2012).

Although these previous studies have provided important in-
formation relating to food security, and have even been used to
support the implementation of policies for fighting the food crisis
and eradicating poverty and hunger, they still have limitations. For
example, most of the data used in these studies were obtained from
statistical yearbooks rather than firsthand data. It is therefore hard
to reveal the influence of soil, climate, topography and land use
policies on food security directly. On the other hand, some of these
studies evaluate food security by establishing index systems that
may involve many subjective judgments, leaving them lacking in
objectivity.

This paper attempts to overcome these limitations by an
applying an Environmental Policy Integrated Climate (EPIC) model
developed by the Geographic Information System (GIS) method to
predict crop production levels. This model, selected for its robust-
ness and availability of data, is combined with a Crop Choice De-
cisionModel (CCDM) to simulate the production and distribution of
six crops in Africa from 1993 to 2012 at the resolution of 30’. The
available calories are calculated for each crop produced and the
numbers of undernourished people in African countries estimated
based on the minimum dietary energy requirement (MDER) index.
From these data, recommendations are made to improve food se-
curity in Africa.

2. Methods and materials

2.1. GIS-based EPIC model

The United States Department of Agriculture Agricultural
Research Service first developed the EPIC model in 1984. It enables
the researcher tomodel changes in crop environment, such as plant
and soil moisture and nutrients, which are the major production
constraints in agricultural systems. One version of this system is a
GIS-based agro-ecosystem model that combines EPIC with the GIS
to form the GEPIC model. This can be used to simulate the spatial
and temporal dynamics of the major processes of a soile-
cropeatmosphere-management system (Liu et al., 2007; Wu et al.,
2011). “With the integration of GIS, EPIC can be extended to ap-
plications at the global or regional level” (Tan and Shibasaki, 2003).
The general idea of the GEPIC model is expressed in Fig. 1. The EPIC
model can simulate site-specific processes such as crop growth, the
hydrological cycle, N cycle, C cycle, climate change etc. By inte-
grating EPIC with a GIS, the GEPIC model treats each grid cell as a
site and simulates the above processes for all predefined grid cells
at any spatial resolution (Liu, 2009). A loose coupling approach is
used to integrate EPIC with the GIS, which relies on the transfer of
data files between the GIS and simulation models. With this
approach, the GEPIC interface abstracts most of the required data
from GIS raster maps and edits them to the EPIC-required data
format before transfer to the EPIC model. The simulation results of
the EPIC model are then transferred to the GEPIC interface to
generate output maps (Liu, 2009).

2.2. The GEPIC model combined with the Crop Choice Decision
Model

We apply the CCDM developed by Wu et al. (2007) to simulate
the distribution. The probability that a crop i is chosen for culti-
vation can be stated as (Greene, 1997):

Pi ¼
eui

PN
i¼1eui

(1)

where

ui ¼ ai þ
XM

j¼1

bjxj (2)

with i ¼ 1,2,3 …, N representing the crop selected for simulation, Pi
denotes the probability for crop i and ui represents the utility of
crop i in (1). In (2), ai denotes a constant for crop i, and j¼ 1,2,3…,M
is the number of explanatory variables, xj represents the explana-
tory variable and bj is the coefficient to be estimated for the variable
xj (McFadden, 1973).

The framework in this study combines GIS data with the EPIC
simulation model, as illustrated in Fig. 2. GIS inputs of raster maps
and the database are transferred to text input files by an input data
translation module, which then generate EPIC input files with the
help of the UTIL (Universal Text Integration Language) provided
with the EPIC model (Liu et al., 2007). Finally, the GIS software
ArcGIS, is run in the EPIC model for each simulated grid cell and
combines these with the CCDM outputs and generated GIS outputs,
which are converted to text output files.

2.3. Data sources and processing

Soil data are obtained from the HarmonizedWorld Soil Database
(HWSD): including the depth, percentage of sand, percentage of
organic carbon content, pH, silt and bulk density. HWSD is a 30-arc-
second raster map database combined with the 1:5 000 000 scale
FAO-UNESCO Soil Map of the World. However, it cannot be read by
the GEPIC directly and therefore the 30-arc-second raster is con-
verted into a 30-arc-minute map in which each grid shows the
dominant soil type. Each soil type in the raster map has its own
code in the database that contains detailed soil information (Huang
et al., 2014).

Daily climate data are obtained from the National Climate Data
Center Global daily summary. Dew point temperatures, meanwind
speeds, precipitation and maximum and minimum temperatures
are selected as the inputs for the GEPIC model with the daily date

Fig. 1. Framework of the GEPIC model (Liu, 2009).
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