FISEVIER

Contents lists available at ScienceDirect

Renewable and Sustainable Energy Reviews

journal homepage: www.elsevier.com/locate/rser

Effect of different technologies on combustion and emissions of the diesel engine fueled with biodiesel: A review

Jiaqiang E^{a,d,*}, Minhhieu Pham^{a,b,d,*}, D. Zhao^{c,**}, Yuanwang Deng^{a,d}, DucHieu Le^{a,b}, Wei Zuo^{a,d}, Hao Zhu^{a,d}, Teng Liu^{a,d}, Qingguo Peng^{a,d}, Zhiqing Zhang^{a,d}

- ^a State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Hunan University, Changsha 410082, China
- ^b Faculty of Automobile Technology, Hanoi University of Industry, Hanoi city 10000, Vietnam
- ^c Department of Mechanical Engineering, College of Engineering, University of Canterbury, Private Bag 4800, Christchurch 8140, New Zealand
- d Institute of New Energy and Energy-saving & Emission-reduction Technology, Hunan University, Changsha 410082, China

ARTICLE INFO

Keywords: Biodiesel Combustion and emissions Diesel engine Particulate matter

ABSTRACT

Due to the shortage of the conventional fossil fuels and air pollution from combustion, new, sustainable and cleaner fuel resources are urgently required. Biodiesel has been introduced as a potential and alternative fuel for years. Biodiesel can be produced from different sources such as vegetable oils, animal fat, waste oil, etc. All of them are renewable and do not affect the food security. When biodiesel is used as a fuel resource for diesel engines, the performance and emission characteristics such as brake thermal efficiency (BTE), brake specific fuel consumption (BSFC) and brake power are almost maintained while hydrocarbons (HC), carbon monoxide (CO), and particulate matter (PM) is decreased significantly. However, higher NO_x concentration is observed. This disadvantage of using biodiesel or biofuels in general is improved in recent years. The purpose of this work is to do a comprehensive investigation of different approaches applying to biodiesel fueled engine like biodiesel additives, exhaust gas recirculation (EGR), water injection (WI), emulsion technology (ET), injection strategy modification, simultaneous technologies (ST), combustion chamber geometry modification and low temperature combustion (LTC) mode. By the way, the impacts of these technologies on engine performance and emission characteristics are summarized. Upon the comparison, using LTC mode is more efficient and feasible than the others. It can reduce both NO_x and PM emissions simultaneously by up to 95% and 98%, respectively, while engine performance is slightly reduced. Looking inside the LTC mode, the most efficient model is the reactivity controlled compression ignition (RCCI) combustion system. Applying RCCI combustion model might lead to the increase of CO and HC emissions, but this issue can be easily solved by using some available technologies.

1. Introduction

In recent decades, total worldwide energy consumption has been increased significantly. It leads to the global warming phenomenon result in higher average temperature of the earth [1] and threatening the energy security [2]. The rate of energy consumption will reach about 53% by 2030 [3] as reported by IEA (International Energy Agency). Thus the depletion of fossil fuels is appeared in clear vision in the near future. In addition, emissions from burning petroleum-derived fuels affected adversely both the environment and human health [4,5]. To cope with this issue, almost every country in the world released the emission legislations which are more and more stringent [6]. For all of those reasons, the alternative, sustainable fuels that can gradually replace the fossil fuels are urgently required. Among the

proposed alternative fuels for diesel engines, biodiesel was considered as a reliable potential candidate.

Biodiesel fuels are formulated from animal fat and vegetable oil, which are non-toxic and more bio degradable [7], eco-friendly and more reliable [8]. Biodiesel is now widely accepted as a comparable fuel to fossil diesel owing to its several favorable factors like availability, higher lubricity, and lower exhaust emissions. Conversely, biodiesel fuel has some disadvantages such as lower heating value, higher density, higher viscosity and higher nitrogen oxides (NO_x) emission compared to conventional diesel [9]. Regarding NO_x emission, due to strict emission standards might lead to a significant barrier to using biodiesel it is necessary to be concerned about combustion and emissions of the diesel engine fueled with biodiesel. In the literature, there are different approaches to improve diesel engine's performance and emission when shifting to use biodiesel fuel.

^{*} Corresponding author at: State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Hunan University, Changsha 410082, China.

^{**} Corresponding author at: Department of Mechanical Engineering, College of Engineering, University of Canterbury, Private Bag 4800, Christchurch 8140, New Zealand. E-mail addresses: ejiaqiang@126.com (J. E), minhhieu186@gmail.com (M. Pham), dan.zhao@canterbury.ac.nz (D. Zhao).

Nomenclature		CSB	Cottonseed Biodiesel
		SB	Soybean Biodiesel
IEA	International Energy Agency	SFB	Sunflower Biodiesel
HTC	High Temperature Combustion	COB	Corn Oil Biodiesel
IMEP	Indicating Mean Effective Pressure	RBB	Rice Bran Biodiesel
CR	Compression Ratio	TPB	Thevetia Peruviana Biodiesel
DI	Direct Injection	JOB	Jojoba Biodiesel
CI	Compression Ignition	MB	Mahua Biodiesel
TC	Turbocharged	CB	Colza Biodiesel
LHR	Low Heat Rejection	PKB	Palm Kernel Biodiesel
PM	Particulate Matter	COME	Castor Oil Methyl Ester
HC	Hydrocarbon	CnB	Canola Biodiesel
CO	Carbon Monoxide	FOB	Fish Oil Biodiesel
BSFC	Brake Specific Fuel Consumption	BTDC	Before Top-Dead-Center
EAT	Exhaust After-treatment	AASTM	D6751 ASTM D6751-01 American Society for Testing an
TDC	Top Dead Center	Materials (Biodiesel Standards), USA	
PCCI	Premixed Charge Compression Ignition	EN 1421	3 European Union Standards (Biodiesel)
ATDC	After Top-Dead-Center	DPPD	N,N'-diphenyl-1,4-phenylenediamine
EN1421	3 European Union Standards (Bio-Heating Fuels)	ODA	Octylated Diphenylamine
HCCI	Homogeneous Charge Compression Ignition	PPDA	p-phenylenediamine
BTE	Brake Thermal Efficiency	BHT	Butylated hydroxytoluene
SOI	Start of Injection	EDA	Ethylenediamine
CFD	Computational Fluid Dynamics	NPAA	4-nonyl phenoxy acetic acid
NA	Naturally Aspirated	DEE	Diethyl Ether
LL	Low Load	EHN	2-ethyl-hexyl nitrate
HL	High Load	DMC	Dimethyl Carbonate
ml	Medium Load	TCC	Toroidal Combustion Chamber
AC	Air Cooled	SCC	Shallow Depth Combustion Chamber
WC	Water Cooled	HCC	Hemispherical Combustion Chamber
CS	Constant Speed	UBHC	Unburn Hydrocarbon
DE	Diesel Engine	FAAE	Fatty Acid Alkyl Esters
CA	Crank Angle	TBHQ	Tert-butylhydroquinone
rpm	Revolutions per minute	MBEBP	2,2'-methylenebis (4-methyl-6- <i>tert</i> -butyphenol)
PAHs	Polycyclic Aromatic Hydrocarbons	PHC	Pyridoxine Hydro Chloride
JB	Jatropha Biodiesel	DEA	Di-Ethyl Amine
TOME	Tall Oil Methyl Ester	TPB	Thevetia Peruviana Biodiesel
KB	Karanja Biodiesel	LOME	Linseed Oil Methyl Ester
RB	Rapeseed Biodiesel	PME	Palm Methyl Ester
WCB	Waste Cooking Biodiesel	H50	50% Honne oil
RCCI	Reactivity Controlled Compression Ignition		

Sivalakshmi et al. [10] analyzed the impacts of biodiesel fuel on $\mathrm{NO_x}$ emission and their countermeasures. They concluded that using biodiesel reduces the carbon monoxide (CO), hydrocarbon (HC) and smoke emissions, but $\mathrm{NO_x}$ increased. Similar reports have also been presented by other researchers [11–13]. The common known mechanism for the formation of $\mathrm{NO_x}$ emission during combustion includes thermal, prompt, and NNH mechanisms [12,14], in which the thermal

and prompt mechanisms are the most important ones in biodiesel combustion [15]. Thermal $\mathrm{NO_x}$ is originated from high local temperature due to excess hydrocarbon oxidation. Prompt $\mathrm{NO_x}$ is produced by the formation of free radicals in the front flame. It was reported that $\mathrm{NO_x}$ concentration was mainly affected by the prompt mechanism in biodiesel combustion [16–18] (see Fig. 1).

Combustion and emission characteristics of diesel engine operated

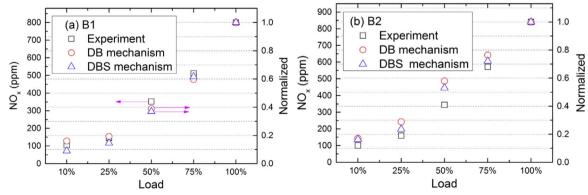


Fig. 1. NO_x emission trends prediction testing [16–18].

Download English Version:

https://daneshyari.com/en/article/5482083

Download Persian Version:

https://daneshyari.com/article/5482083

<u>Daneshyari.com</u>