

Contents lists available at ScienceDirect

Renewable and Sustainable Energy Reviews

journal homepage: www.elsevier.com/locate/rser

Control, power and electrical components in wave energy conversion systems: A review of the technologies

Emre Ozkop*, Ismail H. Altas

Department of Electrical and Electronics Engineering, Karadeniz Technical University, Trabzon, Turkey

ARTICLE INFO

Article history: Received 30 March 2015 Received in revised form 18 March 2016 Accepted 6 September 2016

Keywords:
Wave energy
Wave energy converter
Electrical control
Mechanical control
Power electronic circuits

ABSTRACT

The purpose of this paper is to introduce the status of wave energy conversion (WEC) technologies from a different perspective. Past studies based on WEC systems are summarized and classified in terms of WEC system components to clearly reveal the performance, efficiency and development of WEC technologies over the last two decades. It has been proved that the individual components of a WEC system, such as types of wave energy converter and generator motion, control methods and power electronic converter, have a close relationship with each other and that no single component can be optimized without considering the others. It can be helpful to divide into descriptive parts to provide a better understanding of the development process for WEC technologies so that studies based on WEC technologies are discussed by regarding types of wave energy converters, generators, control methods, controller applied sides, waves, power electronic converters and validations and publication year in this paper.

© 2016 Elsevier Ltd. All rights reserved.

Contents

1.	Introd	luction	106
2.	Wave energy		
	2.1.	Wave energy systems	108
		2.1.1. Oscillating Water Column (OWC)	. 108
	2.2.	Control issues in wave energy systems	109
		Power and electrical components in wave energy systems.	
		Realization	
	2.5.	Publication status	. 111
3.	Concl	usions	112
	erences		

1. Introduction

Energy is a key to economic and social development. Though the world population and national economic growth continue to affect the energy and electricity demands, approximately 80% of the world's energy demand is still supplied by fossil fuels (petroleum, natural gas, and coal). The world energy demand is expected to grow by 70% by 2050 regarding to International Energy Agency scenario suggested in 2014 [1]. It is assumed that global energy

demand will increase by nearly one-third from 2013 to 2040 [2]. Energy indicators show that there is still an energy deficit in the world, with almost 1.1 billion people, approximately 15% of the world population, still living without electricity [3].

There is no need to explain how the energy is important and how the use of renewable energy is inevitable. It is obvious that energy is an important necessity for quality of life standards and strategic development for the nations. An alternative energy source is thus always in the scope of the research topics for current and future energy planning. To mitigate the potential crises caused by the limited resources and the potential disputes between countries, many nations have targeted investing in renewable

^{*} Corresponding author.

E-mail address: eozkop@ktu.edu.tr (E. Ozkop).

Nomenclature			Optimal control
		00C	On-off control
AACDCR	Active AC/DC rectifier	OT	Overtopping
	AC/DC boost rectifier	OWC	Oscillating water column
	BC AC/DC h-bridge boost converter	PAC	Phase+amplitude control
AFC	Air flow control	PACDCR	Passive AC/DC rectifier
AFPIC	Adaptive fuzzy PI control	PC	Predictive control
	Adaptive grey fuzzy PID control	PhC	Phase control
	CR Active half-bridge AC/DC rectifier	PIC	PI control
AmC	Amplitude control	PID	Proportional + integral + derivative
AWS	Archimedes wave swing	PIDC	PID control
BQE	Bus quantity enhancer	PLC	Passive loading control
cc	Current control	PM	Permanent magnet
CvcWEC	Cycloidal WEC	PoC	Power control
DCACI	DC/AC inverter	PPICC	P–PI cascade control
	C DC-DC buck-boost converter	PTO	Power take off
DCDCBo	C DC-DC boost converter	RC	Reactive control
DCDCBu	DCDCBuC DC-DC buck converter		Robust control
DCDCC	DC-DC converter	RSC	Rotational speed control
DeC	Declutching control	SMC	Sliding mode control
DTC	Direct torque control	SPF-GP	Switched power filter-green plug
FC	Feedback control	STC	Slow-tuning control
FFC	Feed-forward control	TC	Torque control
FLC	Fuzzy logic control	UnC	Uncontrolled
FOC	Field-oriented control	UNSD	Unused
HVDC	High voltage direct current	VC	Valve control
LC	Latching control	VoC	Voltage control
LoC	Load control	WEC	Wave energy conversion
NNC	Neural network control	WSE	Wave star energy
OB	Oscillating bodies		

energy as an alternative to the conventional sources.

Renewable energy provides a possibility to reduce environmental problems and increase source diversity. Many countries have announced regulations to encourage investors to use renewable energy. Over the last decade, the use of renewable energy sources such as wind and solar has increased tremendously, such that some countries are generating approximately 4-20% of their energy needs from wind and solar resources. Although they are not used as frequently as solar and wind energy, wave and tidal energy have recently become alternatives to conventional sources as devices are developed to resolve the power quality problems. Because one of the main problems in renewable energy applications is the interfacing of the generating units with the user, the interface devices have an important role in renewable energy utilization. In addition to the technical problems, the investors of renewable energy systems are still facing problems with feed-in tariffs, renewable portfolio standards, local regulations, and financial support.

Renewable sources have grown to supply estimated 22.8% of the global electricity in 2015 [4]. At least 145 countries have renewable energy policy targets or support policies [4]. Moreover, total global investment in renewable energy in 2014 has increased by 16.4% over the previous year. As the renewable energy capacity has grown, the costs have decreased accordingly. At least 100 jurisdictions at the national or provincial level have enacted feedin tariff programs. Many policies have been implemented to popularize renewable energy applications, such as direct capital investment subsidies and grants, tax incentives, credits, and public financing [4–6].

Studies about ocean/wave/tidal energy have been discussed widely in literature with different perspectives. This paper aims to review the studies focused on WEC technologies published for

about two decades. Different approaches, methodologies and points of view for the problem solutions are introduced and discussed in these studies. The approaches and methodologies are mostly focused on electrical wave energy converter, generator, control methods, power electronic converter, wave types and power quality issues. A detailed discussion and conclusion of WEC technologies are presented with a different point of view. Thus, WEC related topics such as costs, reliability and efficiency are not discussed in this paper. However, they can be found in literature [7–13].

2. Wave energy

Over 70% of Earth's surface is covered by oceans, which are the world's largest solar collectors. Moreover, the oceans are the biggest untapped energy sources on Earth. The power density of wave energy is much higher than that of wind or solar energy. Depending on the sea surface, weather conditions, the shore structure and the location on Earth, the magnitude and periodic characteristic of waves may vary. Besides, waves show different characteristics from season to season, day to night, day to day, even hour to hour during the same day. Wave energy converters can produce power up to 90% of the time according to design and application methodologies, whereas wind and solar power systems produce 20–30% of the time [14–17].

Literature survey on the studies related to WEC systems is performed and categorized with subsections such as wave condition (regular and irregular waves), wave energy converter type (oscillating bodies, oscillating water column, overtopping), generator type (rotary and linear), control (mechanical and electrical sides), power electronic converter topology, and study type

Download English Version:

https://daneshyari.com/en/article/5482721

Download Persian Version:

https://daneshyari.com/article/5482721

<u>Daneshyari.com</u>